Advertisement

A Decentralized Deterministic Information Propagation Model for Robust Communication

  • Christopher Diaz
  • Alexander NikolaevEmail author
  • Eduardo Pasiliao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11280)

Abstract

Many of the methods that are used to optimize network structure for information sharing are centralized, which is not always desirable in practice. Often, it is only feasible to have the communicating actors modify the network locally, i.e., without relying on the knowledge of the entire network structure. Such a requirement typically arises in establishing communication between actors (e.g., Unmanned Aerial Vehicles) that either do not have access to a central hub or prefer not to use this direct transmission channel even if available. This paper adopts an actor-oriented modeling approach to develop the Decentralized Deterministic Information Propagation (DDIP) model that enables the creation of networks that exhibit the properties desirable for efficient information sharing. Computational experiments showcase the ability of the DDIP model to form robust networks while being energy-conscious, i.e., without unnecessarily overloading any particular actor.

Keywords

Communication networks Decentralized optimization Stochastic actor-oriented modeling 

Notes

Acknowledgments

This work was funded in part by the AFRL Mathematical Modeling and Optimization Institute, by the National Science Foundation Award No. 1635611, and by the U.S. Air Force Summer Faculty Fellowship (granted to the second author by the Air Force Office of Scientific Research).

References

  1. 1.
    Akyildiz, I., Kasimoglu, I.: Ad Hoc Netw. J. 2(4), 351–367 (2004). https://bwn.ece.gatech.edu/surveys/actors.pdfCrossRefGoogle Scholar
  2. 2.
    Broecheler, M., Shakarian, P., Subrahmanian, V.: A scalable framework for modeling competitive diffusion in social networks. In: 2010 IEEE Second International Conference on Social Computing (SocialCom), pp. 295–302, August 2010.  https://doi.org/10.1109/SocialCom.2010.49
  3. 3.
    Chinowsky, P., Diekmann, J., Galotti, V.: Social network model of construction. J. Constr. Eng. Manag. 134(10), 804–812 (2008).  https://doi.org/10.1061/(ASCE)0733-9364(2008)134:10(804)
  4. 4.
    De, J., Zhang, X., Cheng, L.: Transduction on directed graphs via absorbing random walks. arXiv preprint arXiv:1402.4566 1402(4566) (2014). http://arxiv.org/abs/1402.4566
  5. 5.
    Greenan, C.C.: Diffusion of innovations in dynamic networks. J. Roy. Stat. Soc. Ser. A (Stat. Soc.) 178(1), 147–166 (2015).  https://doi.org/10.1111/rssa.12054/pdf
  6. 6.
    Jackson, M.O., Watts, A.: The evolution of social and economic networks. J. Econ. Theor. 106(2), 265–295 (2002).  https://doi.org/10.1006/jeth.2001.2903. http://www.sciencedirect.com/science/article/pii/S0022053101929035MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jiang, C., Chen, Y., Liu, K.: Evolutionary dynamics of information diffusion over social networks. IEEE Trans. Signal Process. 62(17), 4573–4586 (2014).  https://doi.org/10.1109/TSP.2014.2339799MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lanham, M., Morgan, G., Carley, K.: Social network modeling and agent-based simulation in support of crisis de-escalation. IEEE Trans. Syst. Man Cybern. Syst. 44(1), 103–110 (2014).  https://doi.org/10.1109/TSMCC.2012.2230255CrossRefGoogle Scholar
  9. 9.
    Nikolaev, A.G., Razib, R., Kucheriya, A.: On efficient use of entropy centrality for social network analysis and community detection. Soc. Netw. 40, 154–162 (2015). http://www.sciencedirect.com/science/article/pii/S0378873314000550CrossRefGoogle Scholar
  10. 10.
    Olfati-Saber, R., Fax, A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  11. 11.
    Sabattini, L., Secchi, C., Chopra, N.: Decentralized control for maintenance of strong connectivity for directed graphs. In: 21st Mediterranean Conference on Control and Automation, pp. 978–986, June 2013.  https://doi.org/10.1109/MED.2013.6608840
  12. 12.
    Safar, M., Mahdi, K., Torabi, S.: Network robustness and irreversibility of information diffusion in Complex networks. J. Comput. Sci. 2(3), 198–206 (2011).  https://doi.org/10.1016/j.jocs.2011.05.005. http://www.sciencedirect.com/science/article/pii/S1877750311000482CrossRefGoogle Scholar
  13. 13.
    Smith, B., Egerstedt, M., Howard, A.: Automatic deployment and formation control of decentralized multi-agent networks. In: IEEE International Conference on Robotics and Automation, ICRA 2008. pp. 134–139, May 2008.  https://doi.org/10.1109/ROBOT.2008.4543198
  14. 14.
    Snijders, T.A.: The statistical evaluation of social network dynamics. Sociol. Methodol. 31(1), 361–395 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Snijders, T.A., Van de Bunt, G.G., Steglich, C.E.: Introduction to stochastic actor-based models for network dynamics. Soc. Netw. 32(1), 44–60 (2010). http://www.sciencedirect.com/science/article/pii/S0378873309000069CrossRefGoogle Scholar
  16. 16.
    Villatoro, D., Sabater-Mir, J., Sen, S.: Robust convention emergence in social networks through self-reinforcing structures dissolution. ACM Trans. Auton. Adapt. Syst. 8(1), 2:1–2:21 (2013).  https://doi.org/10.1145/2451248.2451250.  https://doi.org/10.1145/2451248.2451250
  17. 17.
    Watts, A.: A dynamic model of network formation. Games Econ. Behav. 34(2), 331–341 (2001).  https://doi.org/10.1006/game.2000.0803. http://www.sciencedirect.com/science/article/pii/S0899825600908030MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wu, X.M., Li, Z., So, A.M., Wright, J., Chang, S.F.: Learning with partially absorbing random walks. In: Advances in Neural Information Processing Systems, pp. 3077–3085 (2012). http://papers.nips.cc/paper/4833-learning-with-partially-absorbing-random-walks

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Christopher Diaz
    • 1
  • Alexander Nikolaev
    • 1
    Email author
  • Eduardo Pasiliao
    • 2
  1. 1.University at BuffaloBuffaloUSA
  2. 2.Air Force Research Laboratory, Eglin AFBOkaloosaUSA

Personalised recommendations