Advertisement

K-Shell Rank Analysis Using Local Information

  • Akrati Saxena
  • S. R. S. IyengarEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11280)

Abstract

For network scientists, it has always been an interesting problem to identify the influential nodes in a given network. K-shell decomposition method is a widely used method which assigns a shell-index value to each node based on its influential power. K-shell method requires the entire network to compute the shell-index of a node that is infeasible for large-scale real-world dynamic networks. In the present work, first, we show that the shell-index of a node can be estimated using its \(h^2-index\) which can be computed using local neighborhood information. We further show that \(h^2-index\) has better monotonicity and correlation with the spreading power of the node than the shell-index. Next, we propose hill-climbing based methods to identify top-ranked nodes in a small number of steps. We further propose a heuristic method to estimate the percentile rank of a node without computing influential power of all the nodes.

References

  1. 1.
    Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)CrossRefGoogle Scholar
  3. 3.
    Saxena, A., Iyengar, S.R.S., Gupta, Y.: Understanding spreading patterns on social networks based on network topology. In: 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1616–1617. IEEE (2015)Google Scholar
  4. 4.
    Zeng, A., Zhang, C.-J.: Ranking spreaders by decomposing complex networks. Phys. Lett. A 377(14), 1031–1035 (2013)CrossRefGoogle Scholar
  5. 5.
    Liu, J.-G., Ren, Z.-M., Guo, Q.: Ranking the spreading influence in complex networks. Phys. A Stat. Mech. Appl. 392(18), 4154–4159 (2013)CrossRefGoogle Scholar
  6. 6.
    Basaras, P., Katsaros, D., Tassiulas, L.: Detecting influential spreaders in complex, dynamic networks. Computer 46(4), 0024–29 (2013)CrossRefGoogle Scholar
  7. 7.
    Bae, J., Kim, S.: Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. A Stat. Mech. Appl. 395, 549–559 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tatti, N., Gionis, A.: Density-friendly graph decomposition. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1089–1099. International World Wide Web Conferences Steering Committee (2015)Google Scholar
  9. 9.
    Lü, L., Zhou, T., Zhang, Q.-M., Stanley, H.E.: The H-index of a network node and its relation to degree and coreness. Nat. Commun. 7 (2016)CrossRefGoogle Scholar
  10. 10.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2 (2007)CrossRefGoogle Scholar
  11. 11.
    Zafarani, R., Liu, H.: Social computing data repository at ASU (2009)Google Scholar
  12. 12.
    Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)CrossRefGoogle Scholar
  13. 13.
    Hogg, T., Lerman, K.: Social dynamics of digg. EPJ Data Sci. 1(1), 1–26 (2012)CrossRefGoogle Scholar
  14. 14.
    Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30115-8_22CrossRefGoogle Scholar
  15. 15.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42. ACM (2009)Google Scholar
  16. 16.
    Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1082–1090. ACM (2011)Google Scholar
  17. 17.
    Gupta, Y., Das, D., Iyengar, S.R.S.: Pseudo-cores: the terminus of an intelligent viral meme’s trajectory. In: Cherifi, H., Gonçalves, B., Menezes, R., Sinatra, R. (eds.) Complex Networks VII. SCI, vol. 644, pp. 213–226. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30569-1_16CrossRefGoogle Scholar
  18. 18.
    Saxena, A., Iyengar, S.R.S.: Global rank estimation. arXiv preprint arXiv:1710.11341 (2017)
  19. 19.
    Saxena, A., Malik, V., Iyengar, S.R.S.: Rank me thou shalln’t compare me. arXiv preprint arXiv:1511.09050 (2015)
  20. 20.
    Saxena, A., Gera, R., Iyengar, S.R.S.: Observe locally rank globally. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 139–144. ACM (2017)Google Scholar
  21. 21.
    Saxena, A., Gera, R., Iyengar, S.R.S.: Estimating degree rank in complex networks. Soc. Netw. Anal. Min. 8(1), 42 (2018)CrossRefGoogle Scholar
  22. 22.
    Saxena, A., Gera, R., Iyengar, S.R.S.: Fast estimation of closeness centrality ranking. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 80–85. ACM (2017)Google Scholar
  23. 23.
    Saxena, A., Gera, R., Iyengar, S.R.S.: A faster method to estimate closeness centrality ranking. arXiv preprint arXiv:1706.02083 (2017)
  24. 24.
    Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978).  https://doi.org/10.1007/BFb0067700CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Computer Science and Engineering DepartmentIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations