Advertisement

Question Understanding in Community-Based Question Answering Systems

  • Phuc H. Duong
  • Hien T. NguyenEmail author
  • Hao T. Do
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11280)

Abstract

In this paper, we propose a novel method for community-based question answering task. The proposed method takes advantage of the bidirectional long short-term memory to represent questions and answers in combination with an attention mechanism. The attention model based on a multilayer perceptron captures important information in questions and their candidate sentences. We conduct experiments on public datasets, published by SemEval workshop. The experimental results show that our method achieves state-of-the-art performance.

Keywords

Answer selection Community-based question answering 

References

  1. 1.
    Ferrucci, D.A., et al.: Building Watson: an overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010)CrossRefGoogle Scholar
  2. 2.
    Nakov, P., Màrquez, L., Magdy, W., Moschitti, A., Glass, J., Randeree, B.: Semeval-2016 task 3: community question answering. In: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval 2016, San Diego. Association for Computational Linguistics, June 2016Google Scholar
  3. 3.
    Wang, M., Smith, N.A., Mitamura, T.: What is the jeopardy model? A quasi-synchronous grammar for QA. In: Eisner, J. (ed.) Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2007, 28–30 June 2007, Prague, Czech Republic, pp. 22–32. ACL (2007)Google Scholar
  4. 4.
    Yao, X., Durme, B.V., Callison-Burch, C., Clark, P.: Answer extraction as sequence tagging with tree edit distance. In: Vanderwende, L., Daumé III, H., Kirchhoff, K. (eds.) HLT-NAACL, pp. 858–867. The Association for Computational Linguistics (2013)Google Scholar
  5. 5.
    Tymoshenko, K., Moschitti, A.: Assessing the impact of syntactic and semantic structures for answer passages reranking. In: Bailey, J., et al. (eds.) Proceedings of the 24th ACM International Conference on Information and Knowledge Management, CIKM 2015, Melbourne, 19–23 October 2015, pp. 1451–1460. ACM (2015)Google Scholar
  6. 6.
    Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th International Conference on Computational Linguistics - Volume 1. Association for Computational Linguistics (2002)Google Scholar
  7. 7.
    tau Yih, W., Chang, M.W., Meek, C., Pastusiak, A.: Question answering using enhanced lexical semantic models. In: The Association for Computer Linguistics, vol. 1, pp. 1744–1753. ACL (2013)Google Scholar
  8. 8.
    Yu, L., Hermann, K.M., Blunsom, P., Pulman, S.: Deep learning for answer sentence selection. In: NIPS Deep Learning Workshop (2014)Google Scholar
  9. 9.
    Nguyen, H.T., Duong, P.H., Le, T.Q.: A multifaceted approach to sentence similarity. In: Huynh, V.-N., Inuiguchi, M., Denoeux, T. (eds.) IUKM 2015. LNCS (LNAI), vol. 9376, pp. 303–314. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25135-6_29CrossRefGoogle Scholar
  10. 10.
    Duong, P.H., Nguyen, H.T., Nguyen, V.P.: Evaluating semantic relatedness between concepts. In: IMCOM, pp. 20:1–20:8. ACM (2016)Google Scholar
  11. 11.
    He, H., Gimpel, K., Lin, J.J.: Multi-perspective sentence similarity modeling with convolutional neural networks. In: Màrquez, L., Callison-Burch, C., Su, J., Pighin, D., Marton, Y. (eds.) Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, 17–21 September 2015, pp. 1576–1586. The Association for Computational Linguistics (2015)Google Scholar
  12. 12.
    Yang, L., Ai, Q., Guo, J., Croft, W.B.: aNMM: ranking short answer texts with attention-based neural matching model. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 287–296. ACM (2016)Google Scholar
  13. 13.
    Zhang, X., Li, S., Sha, L., Wang, H.: Attentive interactive neural networks for answer selection in community question answering. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San Francisco, pp. 3525–3531. AAAI Press (2017)Google Scholar
  14. 14.
    Tam, W.L., Han, N., Navarro-Horñiacek, J.I., Miyao, Y.: Finding prototypes of answers for improving answer sentence selection. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, 19–25 August 2017, pp. 4103–4108. ijcai.org (2017)Google Scholar
  15. 15.
    Yin, J., Zhao, W.X., Li, X.: Type-aware question answering over knowledge base with attention-based tree-structured neural networks. J. Comput. Sci. Technol. 32(4), 805–813 (2017)CrossRefGoogle Scholar
  16. 16.
    Xiong, C., Zhong, V., Socher, R.: DCN+: mixed objective and deep residual coattention for question answering. CoRR abs/1711.00106 (2017)Google Scholar
  17. 17.
    Xiong, C., Zhong, V., Socher, R.: Dynamic coattention networks for question answering. In: Proceedings of ICLR (2017)Google Scholar
  18. 18.
    Min, S., Zhong, V., Socher, R., Xiong, C.: Efficient and robust question answering from minimal context over documents. In: Association for Computational Linguistics 2018 Conference. The Association for Computational Linguistics (2018)Google Scholar
  19. 19.
    Yu, B., Xu, Q., Zhang, P.: Question classification based on MAC-LSTM. In: IEEE Third International Conference on Data Science in Cyberspace (DSC), pp. 69–75, June 2018Google Scholar
  20. 20.
    Duong, P.H., Nguyen, H.T., Nguyen, D.D., Do, H.T.: A hybrid approach to answer selection in question answering systems. In: Huynh, V.-N., Inuiguchi, M., Tran, D.H., Denoeux, T. (eds.) IUKM 2018. LNCS (LNAI), vol. 10758, pp. 191–202. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75429-1_16CrossRefGoogle Scholar
  21. 21.
    Wu, G., Lan, M.: ECNU at SemEval-2016 task 3: exploring traditional method and deep learning method for question retrieval and answer ranking in community question answering. In: Bethard, S., Cer, D.M., Carpuat, M., Jurgens, D., Nakov, P., Zesch, T. (eds.) Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2016, San Diego, 16–17 June 2016, pp. 872–878. The Association for Computer Linguistics (2016)Google Scholar
  22. 22.
    Xie, Y., Wang, M., Ma, J., Jiang, J., Lu, Z.: EICA team at SemEval-2017 task 3: semantic and metadata-based features for community question answering. In: Bethard, S., Carpuat, M., Apidianaki, M., Mohammad, S.M., Cer, D.M., Jurgens, D. (eds.) Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, 3–4 August 2017. Association for Computational Linguistics, pp. 292–298 (2017)Google Scholar
  23. 23.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)Google Scholar
  24. 24.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting Held 5–8 December 2013, Lake Tahoe, pp. 3111–3119 (2013)Google Scholar
  25. 25.
    Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 12–17 February 2016, Phoenix, pp. 2741–2749. AAAI Press (2016)Google Scholar
  26. 26.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  27. 27.
    Nakov, P., et al.: SemEval-2017 task 3: community question answering. In: Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval 2017, Vancouver. Association for Computational Linguistics, August 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Artificial Intelligence Laboratory, Faculty of Information TechnologyTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.NewAI ResearchHo Chi Minh CityVietnam

Personalised recommendations