Advertisement

Group Based Immunization Strategy on Networks with Nonlinear Infectivity

  • Chandni SaxenaEmail author
  • M. N. Doja
  • Tanvir Ahmad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11280)

Abstract

Misinformation diffusion on network and its adverse effects are stimulus factors in designing efficient immunization strategies. We aim to study the node inoculation in the network which is exposed to nonlinear rumor propagation. In order to delimit the contagion on network the group based centrality is considered to order nodes according to their positional power and functional influence in the network. In the process of propagation dynamics, the strength of a node can be determined by the aspect of its connectivity to the other nodes in the network and the flow of contagion through edges depends on the strength of its two end nodes. Therefore, it is pertinent to study effect of immunization on network when misinformation propagation varies with tie strength between nodes. This paper considers degree dependent node strength which varies for every contact and determines nonlinear infectivity on the network. The competence of our proposed method can be established on empirical data sets which determines its adequacy to delimit rumor spread.

Keywords

Node inoculation Nonlinear rumor propagation Node strength Group based centrality 

References

  1. 1.
    Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. 104(27), 11150–11154 (2007)CrossRefGoogle Scholar
  2. 2.
    Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247901 (2003)CrossRefGoogle Scholar
  3. 3.
    Daley, D.J., Kendall, D.G.: Stochastic rumours. IMA J. Appl. Math. 1(1), 42–55 (1965)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Everett, M.G., Borgatti, S.P.: The centrality of groups and classes. J. Math. Sociol. 23(3), 181–201 (1999)CrossRefGoogle Scholar
  5. 5.
    Ghalmane, Z., Hassouni, M.E., Cherifi, H.: Immunization of networks with non-overlapping community structure. arXiv preprint arXiv:1806.05637 (2018)
  6. 6.
    Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. ACM SIGMOD Record 42(2), 17–28 (2013)CrossRefGoogle Scholar
  7. 7.
    Khansari, M.: Centrality measures for immunization of weighted networks. Netw. Biol. 6(1), 12 (2016)Google Scholar
  8. 8.
    Kumar, M., Singh, A., Cherifi, H.: An efficient immunization strategy using overlapping nodes and its neighborhoods. In: Companion of the the Web Conference 2018 on the Web Conference 2018, pp. 1269–1275. International World Wide Web Conferences Steering Committee (2018)Google Scholar
  9. 9.
    Li, X., Guo, J., Gao, C., Zhang, L., Zhang, Z.: A hybrid strategy for network immunization. Chaos Solitons Fractals 106, 214–219 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Maki, D.P., Thompson, M.: Mathematical models and applications: with emphasis on the social life, and management sciences. Technical report (1973)Google Scholar
  11. 11.
    Mehta, A., Mukhoty, B., Gupta, R.: Controlling spread of rumor using neighbor centrality. Acta Physica Polonica B 47(10), 2325–2339 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Michalak, T.P., Aadithya, K.V., Szczepanski, P.L., Ravindran, B., Jennings, N.R.: Efficient computation of the shapley value for game-theoretic network centrality. J. Artif. Intell. Res. 46, 607–650 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M.: Theory of rumour spreading in complex social networks. Phys. A Stat. Mech. Appl. 374(1), 457–470 (2007)CrossRefGoogle Scholar
  14. 14.
    Pan, Z.f., Wang, X.f., Li, X.: Simulation investigation on rumor spreading on scale-free network with tunable clustering. J. Syst. Simul. 18(8), 2346–2348 (2006)Google Scholar
  15. 15.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Reviews of modern physics 87(3), 925 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)CrossRefGoogle Scholar
  17. 17.
    Saxena, C., Doja, M., Ahmad, T.: Group based centrality for immunization of complex networks. Phys. A Stat. Mech. Appl. 508, 35–47 (2018)CrossRefGoogle Scholar
  18. 18.
    Shapley, L.S., Shubik, M.: A method for evaluating the distribution of power in a committee system. Am. Polit. Sci. Rev. 48(3), 787–792 (1954)CrossRefGoogle Scholar
  19. 19.
    Singh, A., Singh, Y.: Nonlinear spread of rumor and inoculation strategies in the nodes with degree dependent tie strength in complex networks. Acta Physica Polonica B 44, 5 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tariq, J., Ahmad, M., Khan, I., Shabbir, M.: Scalable approximation algorithm for network immunization. arXiv preprint arXiv:1711.00784 (2017)
  21. 21.
    Yamada, Y., Yoshida, T.: A comparative study of community structure based node scores for network immunization. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 328–337. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35236-2_33CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer EngineeringJamia Millia IslamiaNew DelhiIndia

Personalised recommendations