Skip to main content

Advanced Characterization of Oxidation Processes and Grain Boundary Migration in Ni Alloys Exposed to 480 °C Hydrogenated Steam

  • Conference paper
  • First Online:
  • 3111 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Advanced electron microscopy and surface science techniques were applied to characterize inter- and intragranular oxidation in Ni–Fe–Cr alloys after exposure to 480 °C hydrogenated steam. Intragranular internal Fe and Cr oxidation was observed in all cases while intergranular oxidation, exclusively external or penetrative, varied depending on the Cr content of the alloy. The kinetics and morphology of intragranular internal oxidation and nodule growth were studied through successive short-term exposures with characterization performed between exposures. FIB 3D serial sectioning was used to reconstruct volumes containing oxidized grain boundaries and revealed that diffusion-induced grain boundary migration may play a fundamental role in increasing the outward flux of Cr, Ti, and Al near grain boundaries, depending on the extent of intergranular Cr carbide precipitation. In addition, atom probe tomography was used to study the behaviour of minor impurity elements, Al and Ti, and initial oxidation processes. Further analyses of oxidized samples using three-dimensional ToF-SIMS are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Lozano-Perez, J.M. Titchmarsh, TEM investigations of intergranular stress corrosion cracking in austenitic alloys in PWR environmental conditions. Mater. High Temp. 20(4), 573–579 (2003)

    Article  CAS  Google Scholar 

  2. S. Lozano-Perez, P. Rodrigo, L.C. Gontard, Three-dimensional characterization of stress corrosion cracks. J. Nucl. Mater. 408(3), 289–295 (2011)

    Article  CAS  Google Scholar 

  3. L.E. Thomas, S.M. Bruemmer, High-resolution characterization of intergranular attack and stress corrosion cracking of alloy 600 in high-temperature primary water. Corrosion 56(6), 572–587 (2000)

    Article  CAS  Google Scholar 

  4. S.M. Bruemmer, L.E. Thomas, High-resolution analytical electron microscopy characterization of corrosion and cracking at buried interfaces. Surf. Interface Anal. 31(7), 571–581 (2001)

    Article  CAS  Google Scholar 

  5. J. Panter, B. Viguier, J.M. Cloué, M. Foucault, P. Combrade, E. Andrieu, Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600. J. Nucl. Mater. 348(1–2), 213–221 (2006)

    Article  CAS  Google Scholar 

  6. M. Sennour, P. Laghoutaris, C. Guerre, R. Molins, Advanced TEM characterization of stress corrosion cracking of alloy 600 in pressurized water reactor primary water environment. J. Nucl. Mater. 393(2), 254–266 (2009)

    Article  CAS  Google Scholar 

  7. G.A. Young, W.W. Wilkening, D.S. Morton, E. Richey, N. Lewis, The mechanism and modeling of intergranular stress corrosion cracking of nickel-chromium-iron alloys exposed to high purity water, in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed. T.R. Allen, P.J. King, L. Nelson (The Minerals, Metals & Materials Society (TMS), Salt Lake City, UT, 2005), pp. 913–924

    Google Scholar 

  8. P.M. Scott, M. Le Calvar, Some possible mechanisms of intergranular stress corrosion cracking of alloy 600 in PWR primary water, in Proceedings of the 6th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed by E.P. Simonen (The Minerals, Metals, and Materials Society (TMS), San Diego, CA, 1993), pp. 657–665

    Google Scholar 

  9. H.-B. Park, Y.-H. Kim, B.-W. Lee, K.-S. Rheem, Effect of heat treatment on fatigue crack growth of Inconel 690 and Inconel 600. J. Nucl. Mater. 231(3), 204–212 (1996)

    Article  CAS  Google Scholar 

  10. G.S. Was, J.K. Sung, T.M. Angeliu, Effects of grain boundary chemistry on the intergranular cracking behaviour of Ni-16Cr-9Fe in high-temperature water. Metall. Trans. A 23A(1), 3343–3359 (1992)

    CAS  Google Scholar 

  11. G.P. Airey, Microstructural aspects of the thermal treatment of Inconel alloy 600. Metallography 13(1), 21–41 (1980)

    Article  CAS  Google Scholar 

  12. S.M. Bruemmer, G.S. Was, Microstructural and microchemical mechanisms controlling intergranular stress corrosion cracking in light-water-reactor systems. J. Nucl. Mater. 216, 348–363 (1994)

    Article  CAS  Google Scholar 

  13. T.S. Gendron, S.J. Bushby, R.D. Cleland, R.C. Newman, Oxidation embrittlement of alloy 600 in hydrogenated steam at 400 °C, in Proceedings of the Second International Conference on Corrosion Deformation Interactions CDI ‘96 in Conjunction with EUROCORR ‘96 (The Institute of Materials, Nice, France, 1997) pp. 484–495

    Google Scholar 

  14. T.S. Gendron, S.J. Bushby, R.D. Cleland, R.C. Newman, Oxidation embrittlement of alloy 600 in hydrogenated steam at 400 °C. Analusis Mag. 25, 24–28 (1997)

    Google Scholar 

  15. S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, L.E. Thomas, Linking grain boundary microstructure to stress corrosion cracking of cold-rolled alloy 690 in pressurized water reactor primary water. Corrosion 69(10), 953–963 (2013)

    Article  CAS  Google Scholar 

  16. Q.J. Peng, J. Hou, T. Yonezawa, T. Shoji, Z.M. Zhang, F. Huang, E.H. Han, W. Ke, Environmentally assisted crack growth in one-dimensionally cold worked alloy 690TT in primary water. Corros. Sci. 57, 81–88 (2012)

    Article  CAS  Google Scholar 

  17. B. Langelier, S.Y. Persaud, R.C. Newman, G.A. Botton, An atom probe tomography study of internal oxidation processes in alloy 600. Acta Mater. 109, 55–68 (2016)

    Article  CAS  Google Scholar 

  18. S.Y. Persaud, A. Korinek, J. Huang, G.A. Botton, R.C. Newman, Internal oxidation of alloy 600 exposed to hydrogenated steam and the beneficial effects of thermal treatment. Corros. Sci. 86, 108–122 (2014)

    Article  CAS  Google Scholar 

  19. S.Y. Persaud, J. Smith, A. Korinek, G.A. Botton, R.C. Newman, High resolution analysis of oxidation in Ni–Fe–Cr alloys after exposure to 315 °C deaerated water with added hydrogen. Corros. Sci. 106, 236–248 (2016)

    Article  CAS  Google Scholar 

  20. B.M. Capell, G.S. Was, Selective internal oxidation as a mechanism for intergranular stress corrosion cracking of Ni–Cr–Fe alloys. Metall. Mater. Trans. A 38(6), 1244–1259 (2007)

    Article  CAS  Google Scholar 

  21. D.K. Schreiber, M.J. Olszta, D.W. Saxey, K. Kruska, K.L. Moore, S. Lozano-Perez, S.M. Bruemmer, Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water. Microsc. Microanal. 19(3), 676–687 (2013)

    Article  CAS  Google Scholar 

  22. G. Bertali, F. Scenini, M.G. Burke, Advanced microstructural characterization of the intergranular oxidation of alloy 600. Corros. Sci. 100, 474–483 (2015)

    Article  CAS  Google Scholar 

  23. G. Bertali, F. Scenini, M.G. Burke, The intergranular oxidation susceptibility of thermally-treated alloy 600. Corros. Sci. 114, 112–122 (2017)

    Article  CAS  Google Scholar 

  24. R.C. Newman, F. Scenini, Another way to think about the critical oxide volume fraction for the internal-to-external oxidation transition? Corrosion 64(9), 721–726 (2008)

    Article  CAS  Google Scholar 

  25. F. Scenini, R.C. Newman, R.A. Cottosi, R.J. Jacko, Alloy oxidation studies related to PWSCC, in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed. by T.R. Allen, P.J. King, L. Nelson (The Minerals, Metals & Materials Society (TMS), Salt Lake City, UT, 2005), pp. 891–902

    Google Scholar 

  26. F. Scenini, R.C. Newman, R.A. Cottis, R.J. Jacko, Effect of surface preparation on intergranular stress corrosion cracking of alloy 600 in hydrogenated steam. Corrosion 64(11), 824–835 (2008)

    Article  CAS  Google Scholar 

  27. G. Bertali, F. Scenini, M.G. Burke, The effect of residual stress on the preferential intergranular oxidation of alloy 600. Corros. Sci. 111, 494–507 (2016)

    Article  CAS  Google Scholar 

  28. P. Laghoutaris, J. Chêne, C. Guerre, O. Raquet, M. Sennour, R. Molins, F. Vaillant, P. Scott, Contribution to understanding of stress corrosion cracking of alloy 600 in PWR primary water. Energy Mater. 3(2), 119–125 (2013)

    Article  CAS  Google Scholar 

  29. X. Li, J. Wang, E.-H. Han, W. Ke, Corrosion behavior for alloy 690 and alloy 800 tubes in simulated primary water. Corros. Sci. 67, 169–178 (2013)

    Article  CAS  Google Scholar 

  30. P.M. Scott, An overview of internal oxidation as a possible explanation of intergranular stress corrosion cracking of alloy 600 in PWRs, in Proceedings of the 9th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, ed. by F.P. Ford, S.M. Bruemmer, G.S. Was (The Minerals, Metals & Materials Society (TMS), Newport Beach, CA, 1999), pp. 3–14

    Google Scholar 

  31. B. Langelier, S.Y. Persaud, A. Korinek, T. Casagrande, R.C. Newman, G.A. Botton, Effects of boundary migration and pinning particles on intergranular oxidation revealed by 2D and 3D analytical electron microscopy. Acta Mater. 131, 280–295 (2017)

    Article  CAS  Google Scholar 

  32. S.Y. Persaud, B. Langelier, A. Korinek, S. Ramamurthy, G.A. Botton, R.C. Newman, Characterization of initial intergranular oxidation processes in alloy 600 at a sub-nanometer scale (2017) (manuscript submitted for publication)

    Google Scholar 

  33. J.R. Mackert, R.D. Ringle, C.W. Fairhurst, High-temperature behavior of a Pd–Ag alloy for porcelain. J. Dent. Res. 62(12), 1229–1235 (1983)

    Article  CAS  Google Scholar 

  34. R.A. Rapp, The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys. Acta Metall. 9(8), 730–741 (1961)

    Article  CAS  Google Scholar 

  35. S. Guruswamy, S.M. Park, J.P. Hirth, R.A. Rapp, Internal oxidation of Ag–In alloys: stress relief and the influence of imposed strain. Oxid. Met. 26(1), 77–100 (1986)

    Article  CAS  Google Scholar 

  36. F.H. Stott, Y. Shida, D.P. Whittle, G.C. Wood, B.D. Bastow, The morphological and structural development of internal oxides in nickel–aluminum alloys at high temperatures. Oxid. Met. 18(3), 127–146 (1982)

    Article  CAS  Google Scholar 

  37. G.C. Wood, F.H. Stott, D.P. Whittle, Y. Shida, B.D. Bastow, The high-temperature internal oxidation and intergranular oxidation of nickel-chromium alloys. Corros. Sci. 23(1), 9–25 (1983)

    Article  CAS  Google Scholar 

  38. H.C. Yi, S.W. Guan, W.W. Smeltzer, A. Petric, Internal oxidation of Ni–Al and Ni–Al–Si alloys at the dissociation pressure of NiO. Acta Metall. Mater. 42(3), 981–990 (1994)

    Article  CAS  Google Scholar 

  39. S.Y. Persaud, S. Ramamurthy, R.C. Newman, Internal oxidation of alloy 690 in hydrogenated steam. Corros. Sci. 90, 606–613 (2015)

    Article  CAS  Google Scholar 

  40. M.J. Olszta, D.K. Schreiber, M.B. Toloczko, S.M. Bruemmer, Alloy 690 surface nanostructures during exposure to PWR primary water and potential influence on stress corrosion crack initiation, in Proceedings of the 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed. by P.L. Andresen, M.D. Wright, G.O. Ilevbare (NACE International, Omnipress, Asheville, NC, 2013)

    Google Scholar 

  41. G. Economy, R.J. Jacko, F.W. Perment, IGSCC behaviour of alloy 600 steam generator tubing in water or steam tests above 360 °C. Corrosion 43(12), 727–734 (1987)

    Article  CAS  Google Scholar 

  42. G.S. Was, H.H. Tischner, R.M. Latanision, The influence of thermal treatment on the chemistry and structure of grain boundaries in Inconel 600. Metall. Trans. A 12A(8), 1397–1408 (1981)

    Article  Google Scholar 

  43. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, B. Gorman, In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3), 131–139 (2007)

    Article  CAS  Google Scholar 

  44. B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Microscopy (Springer Science, New York, 2012)

    Book  Google Scholar 

  45. K. Narayan, C.M. Danielson, K. Lagarec, B.C. Lowekamp, P. Coffman, A. Laquerre, M.W. Phaneuf, T.J. Hope, S. Subramaniam, Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology. J. Struct. Biol. 185(3), 278–284 (2014)

    Article  CAS  Google Scholar 

  46. J.W. Cahn, J.D. Pan, R.W. Balluffi, Diffusion induced grain boundary migration. Scr. Metall. 13(6), 503–509 (1979)

    Article  CAS  Google Scholar 

  47. J.W. Cahn, R.W. Balluffi, On diffusional mass transport in polycrystals containing stationary or migrating boundaries. Scr. Metall. 13(6), 499–502 (1979)

    Article  Google Scholar 

  48. M. Hillert, G.R. Purdy, Chemically induced grain boundary migration. Acta Metall. 26(2), 333–340 (1978)

    Article  CAS  Google Scholar 

  49. R.W. Balluffi, J.W. Cahn, Mechanism for diffusion induced grain boundary migration. Acta Metall. 29(3), 493–500 (1981)

    Article  CAS  Google Scholar 

  50. H. Aaron, H.I. Aaronson, Growth of grain boundary precipitates in Al–4%Cu by interfacial diffusion. Acta Metall. 16(6), 789–798 (1968)

    Article  CAS  Google Scholar 

  51. D.K. Schreiber, M.J. Olszta, S.M. Bruemmer, Grain boundary depletion and migration during selective oxidation of Cr in a Ni–5Cr binary alloy exposed to high-temperature hydrogenated water. Scr. Mater. 89, 41–44 (2014)

    Article  CAS  Google Scholar 

  52. D.K. Schreiber, M.J. Olszta, L.E. Thomas, S.M. Bruemmer, Grain boundary characterization of alloy 600 prior to and after corrosion by atom probe tomography and transmission electron microscopy, in Proceedings of the 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed. by P.L. Andresen, M.D. Wright, G.O. Ilevbare (NACE International, Omnipress, Asheville, NC, 2013)

    Google Scholar 

  53. D.K. Schreiber, M.J. Olszta, S.M. Bruemmer, Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni–Al binary alloy exposed to high-temperature water. Scr. Mater. 69(7), 509–512 (2013)

    Article  CAS  Google Scholar 

  54. C.M. Wang, D.K. Schreiber, M.J. Olszta, D.R. Baer, S.M. Bruemmer, Direct in situ TEM observation of modification of oxidation by the injected vacancies for Ni–4Al alloy using a microfabricated nanopost. Appl. Mater. Interfaces 7(31), 17272–17277 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Persaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Persaud, S.Y., Langelier, B., Eskandari, A., Zhu, H., Botton, G.A., Newman, R.C. (2019). Advanced Characterization of Oxidation Processes and Grain Boundary Migration in Ni Alloys Exposed to 480 °C Hydrogenated Steam. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_24

Download citation

Publish with us

Policies and ethics