Skip to main content

A Data-Driven Basis Function Approach in Nonparametric Nonlinear System Identification

  • Chapter
  • First Online:
Uncertainty in Complex Networked Systems

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

  • 835 Accesses

Abstract

In this chapter, a data-driven orthogonal basis function approach is proposed for nonparametric FIR nonlinear system identification. The basis functions are not fixed a priori and match the structure of the unknown system automatically. This eliminates the problem of blindly choosing the basis functions without a priori structural information. Further, based on the proposed basis functions, approaches are proposed for model order determination and regressor selection along with their theoretical justifications. Both random inputs and deterministic inputs are considered.

In memory of Dr Roberto Tempo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akcay, H. and P. Heuberger, (2001), “A frequency domain iterative identification algorithm using general orthonormal basis functions”, Automatica, 37, pp. 663–674.

    Article  MathSciNet  Google Scholar 

  2. Bai, E.W. (2005), “Identification of additive nonlinear systems”, Automatica, 41, pp. 1247–1253.

    Article  Google Scholar 

  3. Bai, E.W. (2008), “Non-Parametric Nonlinear System Identification: a Data-Driven Orthogonal Basis Function Approach”, IEEE Trans on Automatic Control, 53, pp. 2615–2626.

    Article  MathSciNet  Google Scholar 

  4. Bai, E.W. and K.S. Chan, (2008), “Identification of additive nonlinear systems and its application in generalized Hammerstein models”, Automatica, 44, pp. 430–436.

    Article  MathSciNet  Google Scholar 

  5. Bai, E.W. and Y. Liu, (2007), “Recursive direct weight optimization in nonlinear system identification: A minimal probability approach”, IEEE Trans on Automatic Control, 52, pp. 1218–1231.

    Article  MathSciNet  Google Scholar 

  6. Bai, E.W. R. Tempo and Y. Liu, (2007), “Identification of nonlinear systems without prior structural information”, IEEE Trans on Automatic Control, 52, pp. 442–453.

    Article  MathSciNet  Google Scholar 

  7. Bai, E.W. (2008), “Non-Parametric Nonlinear System Identificationation: a Data-Driven Orthogonal Basis Function Approach”, IEEE Trans on Automatic Control, 53, pp. 2615–2626.

    Article  MathSciNet  Google Scholar 

  8. Bai, E.W. and R. Tempo, (2010), “Representation and Identification of Nonparametric Nonparametriconlinear Systems of Short Term Memory and Low Degree of Interactions”, Automatica, 46, pp. 1595–1603.

    Article  Google Scholar 

  9. Box, G.E.P. and D. Pierce, (1970), “Distribution of residual autocorrelations in autoregressive-integrated moving average time series models”, J of the American Statistical Association, 65, pp. 1509–1526.

    Article  MathSciNet  Google Scholar 

  10. Chen, S, SA Billings and W Luo (1989), “Orthogonal least squares methods and their application to non-linear system identification”, Int. J. Control, 50, pp. 1873–1896.

    Article  Google Scholar 

  11. Cerone, V. and D. Regruto, (2007), “Bounding the parameters of linear systems with input backlash”, IEEE Trans on Automatic Control, 52, pp. 531–536.

    Article  MathSciNet  Google Scholar 

  12. Fan, J and I. Gijbels (1996) Local polynomial modelling and its applications, Chapman&Hall/CRC.

    Google Scholar 

  13. Godfrey, G. (1993), PERTURBATION SIGNAL FOR SYSTEM IDENTIFICATION, Prentice-Hall, New York.

    MATH  Google Scholar 

  14. Harris, CJ, X Hong and Q Gan (2002), Adaptive modeling, estimation and fusion from data: a neurofuzzy approach, Springer Verlag.

    Google Scholar 

  15. Juditsky, A. H. Hjalmarsson, A. Benveniste, B. Delyon, L. Ljung, J. Sjoberg and Q. Zhang (1995), “Nonlinear block-box models in system identification: Mathematical foundations,” Automatica, 31, pp. 1725–1750.

    Article  Google Scholar 

  16. Li, K. J. Peng and G. Irwin, (2005), “A fast nonlinear model identification method”, IEEE Trans on Automatic Control, 50, pp. 1211–1216.

    Article  MathSciNet  Google Scholar 

  17. Lind, I. and L. Ljung (2005), “Regression selection with the analysis of variance method”, Automatica, 41, pp. 693–700.

    Article  Google Scholar 

  18. Ljung, L. (1999), SYSTEM IDENTIFICATION: THEORY FOR THE USER, 2nd Ed. Prentice-Hall, Upper Saddle River.

    MATH  Google Scholar 

  19. Lobato, I.N. J. Nankervis and N. Savin, (2002), “Testing for zero autocorrelation in the presence of statistical dependence”, Econometric Theory, 18, pp. 730–743.

    Article  MathSciNet  Google Scholar 

  20. Makila, P.M. (1991), “Robust identification and Galois sequence”, Int. J. of Control, 54, pp. 1189–1200.

    Article  MathSciNet  Google Scholar 

  21. Milanese, M. and C. Novara, (2004), “Set membership identification of nonlinear systems”, Automatica, 40, pp. 957–975.

    Article  MathSciNet  Google Scholar 

  22. Nadaraya, E. (1989), NONPARAMETRIC ESTIMATION OF PROBABILITY DENSITIES AND REGRESSION CURVES, Kluwer Academic Pub. Dordrecht, The Netherlands.

    Book  Google Scholar 

  23. Ninness, B. H. Hjalmarsson and F. Gustafsson, (1999), “On the Fundamental Role of Orthonormal Bases in System Identification”, IEEE Transactions on Automatic Control, 44, No. 7, pp. 1384–1407.

    Article  MathSciNet  Google Scholar 

  24. Papoulis, P. and A. Pillai (2002), PROBABILITY, RANDOM VARIABLES AND STOCHASTIC PROCESSES (4th Ed), McGraw Hill, Boston.

    Google Scholar 

  25. Rugh, W. (1981), NONLINEAR SYSTEM THEORY, John Hopkins University Press, London.

    MATH  Google Scholar 

  26. Sperlich, S. D. Tjostheim and L. Yang (2002), “Non-parametric estimation and testing of interaction in additive models”, Econometric Theory, 18, pp. 197–251.

    Article  MathSciNet  Google Scholar 

  27. Sjoberg, J. Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P-Y. Glorennec, H. Hjalmarsson and A. Juditsky (1995), “Nonlinear black-box modeling in system identification: a unified overview”, Automatica, 31, pp. 1691–1724.

    Article  MathSciNet  Google Scholar 

  28. Soderstrom, T. and P. Stoica (1989), SYSTEM IDENTIFICATION Prentice-Hall, New York, NY.

    Google Scholar 

  29. Soderstrom, T. P. Van den Hof, B. Wahlberg and S. Weiland (Eds) (2005), “Special issue on data-based modeling and system identification”, Automatica, 41, No. 3, pp. 357–562.

    Google Scholar 

  30. Westwick, D.T. and K.R. Lutchen, (2000), “Fast, robust identification of nonlinear physiological systems using an implicit basis function”, Annals of Biomedical Engineering, 28, pp. 1116–1125.

    Article  Google Scholar 

  31. Van den Hof, P.M.J. P.S.C. Heuberger and J. Bokor, (1995) “System identification with generalized orthonormal basis functions”, Automatica, 31, pp. 1821–1834.

    Article  MathSciNet  Google Scholar 

  32. Velasco, C. and I Lobato, (2004), “A simple and general test for white noise”, Econometric Society 2004 Latin American Meetings, number 112, Santiago, Chile.

    Google Scholar 

  33. Zhang, Q. (1997), “Using wavelet network in nonparametric estimation”, IEEE Trans. on Neural Networks, 8, pp. 227–236.

    Article  Google Scholar 

  34. Zhu, Q.M. and S.A. Billings, (1996) “Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks”, Int J. of Control, 64, pp. 871–886.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Er-Wei Bai .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1: The first part is directly from the definition of \(\phi _i\)’s. Also from the definition, it is easily verified that \(\mathbf{E}\phi _j[k]=0\) for \(j=1,...,n\). \(\mathbf{E}\phi _j[k]=0\), \(j=n+1,...,M\) follows from \(\mathbf{E}f_{j_1j_2}(u[k-j_1],u[k-j_2])=0\). We now show \(\mathbf{E}\phi _{j_1}[k]\phi _{j_2}[k]=0\). For \(0\le j_1 < j_2 \le n\), \(\mathbf{E}\phi _{j_1}[k]\phi _{j_2}[k]=\mathbf{E}\phi _{j_1}[k] \mathbf{E}\phi _{j_2}[k]=0\) because of independence of \(u[k-j_1]\) and \(u[k-j_2]\). The proofs for other \(j_1\) and \(j_2\) follow from the same arguments as

$$\begin{aligned} \mathbf{E}\phi _1[k]\phi _{n+1}[k]&=\mathbf{E}\phi _1(u[k-1])\phi _{n+1}(u[k-1],u[k-2]) \\&=\mathbf{E}\{ \phi _1(u[k-1]) \mathbf{E}\{\phi _{n+1}(u[k-1],u[k-2])~|~u[k-1]\}\}=0. \end{aligned}$$

To show the third part, observe

$$\begin{aligned} y[k]=c+\sum _{j=1}^n f_j(u[k-j])+\sum _{1\le j_1 <j_2 \le n} f_{j_1j_2}(u[k-j_1],u[k-j_2])+v[k], \end{aligned}$$
$$\begin{aligned} \mathbf{E}y[k]&= c=\phi _0 \\ \mathbf{E}\{y[k]|u[k-j]=x_j\}&=c+f_j(x_j)=\phi _0+\phi _j(x_j),~j=1,...,n \\ \mathbf{E}\{y[k]~|~u[k-j_1]&=x_{j_1},u[k-j_2]=x_{j_2}\} \\&=c+f_{j_1}(x_{j_1})+f_{j_2}(x_{j_2})+f_{j_1j_2}(x_{j_1},x_{j_2}) \\&=\phi _0+\phi _{j_1}(x_{j_1}) +\phi _{j_2}(x_{j_2})+f_{j_1j_2}(x_{j_1},x_{j_2}),~1\le j_1<j_2 \le n \end{aligned}$$

Then, the conclusion follows from the definition of \(\phi _j\)’s.

Proof of Theorem 2: The first part is from Theorem 1 and the law of large numbers,

$$ \widehat{\phi }_0={1 \over N} \sum y[k] \rightarrow \mathbf{E}y[k]=\phi _0. $$

For the second part, from the assumptions \(\delta \rightarrow 0\), \(\delta N \rightarrow \infty \) as \(N \rightarrow \infty \), the number of samples \(u[k-j]\)’s in the interval,

$$ \varphi _j(x_j,k)=|u[k-j]-x_j| \le \delta $$

converges to \(2\psi (x_j)\delta N \rightarrow \infty \), where the probability density function of the input at \(x_j\), \(\psi (x_j)\), is assumed to be positive, or the number of elements \(l_j \rightarrow 2\psi (x_j)\delta N \rightarrow \infty \). Now,

$$\begin{aligned}&|\widehat{\phi }_j(x_j) -\phi _j(x_j)|= |\sum _{k=1}^{N} w_j(x_j,k)y[k]- \phi _j(x_j) -\widehat{\phi }_0| \\&=|\sum _{k=1}^N w_j(x_j,k) (\phi _0 -\widehat{\phi }_0)+ \sum _{k=1}^{N} w_j(x_j,k) (\phi _j(u[k-j])-\phi _j(x_j)) \end{aligned}$$
$$\begin{aligned}&+\sum _{i=1,i\not =j}^n\sum _{k=1}^{N} w_j(x_j,k) \phi _i(u[k-i]) +\sum _{j=n+1}^M\sum _{k=1}^{N} w_j(x_j,k) \phi _j[k]+\sum _{k=1}^{N} w_j(x_j,k)v[k]| \\&=|\sum _{l=1}^{l_j} w_j(x_j,m_j(l)) (\phi _0 -\widehat{\phi }_0)+ \sum _{l=1}^{l_j} w_j(x_j,m_j(l)) (\phi _j(u[m_j(l)-j])-\phi _j(x_j)) \\&+ \sum _{i=1,i\not =j}^n\sum _{l=1}^{l_j} w_j(x_j,m_j(l)) \phi _i(u[m_j(l)-i]) +\sum _{j=n+1}^M\sum _{l=1}^{l_j} w_j(x_j,m_j(l)) \phi _j[m_j(l)]+ \\&\sum _{l=1}^{l_j} w_j(x_j,m_j(l))v[m_j(l)]| \le |\sum _{l=1}^{l_j} w_j(x_j,m_j(l)) (\phi _0 -\widehat{\phi }_0)| \\&+|\sum _{l=1}^{l_j} |w_j(x_j,m_j(l)) (\phi _j(u[m_j(l)-j])-\phi _j(x_j))| \\&+|\sum _{i=1,i\not =j}^n\sum _{l=1}^{l_j} w_j(x_j,m_j(l)) \phi _i(u[m_j(l)-i])| \\&+|\sum _{j=n+1}^M\sum _{l=1}^{l_j} w_j(x_j,m_j(l)) \phi _j[m_j(l)]| +|\sum _{l=1}^{l_j} w_j(x_j,m_j(l))v[m_j(l)]| \end{aligned}$$

With L being the Lipschitz constant and from the orthogonal properties of \(\phi _j\), \(l_j \rightarrow \infty \), \(w_j(x_j,m_j(l)) \ge 0\) and \(\sum _{l=1}^{l_j}w_j(x_j,m_j(l))=1\),

$$\begin{aligned}&\sum _{l=1}^{l_j} w_j(x_j,m_j(l)) (\phi _0 -\widehat{\phi }_0)=\phi _0 -\widehat{\phi }_0, \\&|\sum _{l=1}^{l_j} |w_j(x_j,m_j(l)) (\phi _j(u[m_j(l)-j])-\phi _j(x_j))|\le \delta L, \\&|\sum _{i=1,i\not =j}^n\sum _{l=1}^{l_j} w_j(x_j,m_j(l)) \phi _i(u[m_j(l)-i])|^2 \\&\rightarrow | \sum _{i=1,i\not = j}^n \mathbf{E}\{\phi _i(u[k-i])~|~u[k-j]=x_j\} |^2+O(\frac{1}{\delta N}), \\&|\sum _{j=n+1}^M\sum _{l=1}^{l_j} w_j(x_j,m_j(l)) \phi _j[m_j(l)]|^2 \\&\rightarrow |\sum _{j=n+1}^M \mathbf{E}\{\phi _j[k] ~|~u[k-j]=x_j\}|^2+O(\frac{1}{\delta N}), \\&|\sum _{l=1}^{l_j} w_j(x_j,m_j(l))v[m_j(l)]|^2 \rightarrow |\mathbf{E}v[k]|^2+O(\frac{1}{N}). \end{aligned}$$

Therefore,

$$ |\widehat{\phi }_j(x_j) -\phi _j(x_j)| \rightarrow |\phi _0-\widehat{\phi }_0|+ \delta L+ O(\frac{1}{\sqrt{\delta N}}) \rightarrow 0,~j=1,...,n $$

This completes the proof of the second part. The proofs of the third part are similar. The only difference is that the convergence rate is \(O(\frac{1}{ \sqrt{\delta ^2 N}})\) as \(N \rightarrow \infty \).

Proof of Theorem 3: It is easily verified that

$$ \int _{\infty }^\infty |K(x)| dx< \infty ,~ \int _{-\infty }^\infty | \int _{-\infty }^\infty K(x) e^{-j\omega x}dx| d \omega < \infty . $$

The rest part of the proof follows directly from Lemma 2 of [19].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, EW., Cheng, C. (2018). A Data-Driven Basis Function Approach in Nonparametric Nonlinear System Identification. In: Başar, T. (eds) Uncertainty in Complex Networked Systems. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04630-9_10

Download citation

Publish with us

Policies and ethics