Skip to main content

Nutraceuticals in Cattle Health and Diseases

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

As a result of growing consumer demand for “clean, green, and ethical” products related to public awareness of environmental and health risks of veterinary medicinal products—and the increase in antimicrobial resistance, leading to loss of effectiveness—beef and dairy producers are striving to find effective alternatives. Nutraceuticals provide a valuable tool for prevention and control of diseases in ruminants through their antioxidant, anti-inflammatory, and antimicrobial effects. Nutraceuticals with beneficial effects on the rumen microbiota contribute to increases in productivity and profitability, since the rumen plays an important role in the immune system and nutrition. The beneficial effects are not restricted to cattle health but also impact the environment as a result of their positive impacts on methane emissions. These compounds also have the potential to increase the “healthy fats” in the final products, which are favored for human health. Therefore, nutraceuticals (including probiotics, prebiotics, and synbiotics), dietary lipids, proteins and peptides (including antimicrobial peptides), algae (macroalgae and microalgae), and phytonutraceuticals (tannins, saponins, and essential oils) are valuable tools in cattle health and disease. Meanwhile, many factors affect the efficacy of nutraceuticals, including the source, production technique, and concentration of the compound, along with the physical condition, diet, species, and rumen pH of the animal. To achieve the maximum benefits of nutraceuticals, more studies should be performed to assess their efficacy and toxicity in different ruminant species with different physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeyrathne EDNS, Lee HY, Ahn DU (2013) Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents—a review. Poult Sci 92(12):3292–3299

    CAS  PubMed  Google Scholar 

  • Acuff GR (2005) Chemical decontamination strategies for meat. In: Sofos NJ (ed) Improving the safety of fresh meat. Woodhead Publishing, Cambridge, pp 350–363

    Google Scholar 

  • Addisu S, Assefa A (2016) Role of plant containing saponin on livestock production; a review. Adv Biol Res 10(5):309–314

    CAS  Google Scholar 

  • Ageitos JM, Sánchez-Pérez A, Calo-Mata P et al (2017) Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 133:117–138

    CAS  PubMed  Google Scholar 

  • Ahmad A, Hayat I, Arif S et al (2014) Mechanisms involved in the therapeutic effects of soybean (Glycine max). Int J Food Prop 17(6):1332–1354

    CAS  Google Scholar 

  • Allen VG, Pond KR, Saker KE et al (2001) Tasco-forage: III influence of a seaweed extract on performance, monocyte immune cell response, and carcass characteristics in feedlot-finished steers. J Anim Sci 79(4):1032–1040

    CAS  PubMed  Google Scholar 

  • Al-Sobayil KA, Zeitoun MM, Khalil MH et al (2008) Effect of oral administration of a functional synbiotic syrup on libido, semen characteristics, serum testosterone and liver and kidney function of goat’s bucks. Asian J Biol Sci 1(1):11–18

    CAS  Google Scholar 

  • Alwathnani H, Perveen K (2017) Antibacterial activity and morphological changes in human pathogenic bacteria caused by Chlorella vulgaris extracts. Biomed Res 28(4):1610–1614

    CAS  Google Scholar 

  • Auclair E (2001) Yeast as an example of the mode of action of probiotics in monogastric and ruminant species. In: Brufau J (ed) Feed manufacturing in the Mediterranean region improving safety: from feed to food. CIHEAM, Zaragoza, pp 45–53

    Google Scholar 

  • Ballester-Costa C, Sendra E, Fernández-López J et al (2017) Assessment of antioxidant and antibacterial properties on meat homogenates of essential oils obtained from four thymus species achieved from organic growth. Foods 6(8):59

    PubMed Central  Google Scholar 

  • Bouga M, Combet E (2015) Emergence of seaweed and seaweed-containing foods in the UK: focus on labeling, iodine content, toxicity and nutrition. Foods 4(2):240–253. https://doi.org/10.3390/foods4020240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bragaglio A, Braghieri A, Napolitano F et al (2015) Omega-3 supplementation, milk quality and cow immune-competence. Ital J Agron 10(1):9–14

    Google Scholar 

  • Broderick GA, Wallace RJ (1988) Effects of dietary nitrogen source on concentrations of ammonia, free amino acids and fluorescamine-reactive peptides in the sheep rumen. J Anim Sci 66:2233–2238

    CAS  Google Scholar 

  • Brunet S, Hoste H (2006) Monomers of condensed tannins affect the larval exsheathment of parasitic nematodes of ruminants. J Agric Food Chem 54(20):7481–7487

    CAS  PubMed  Google Scholar 

  • Callaway TR, Edrington TS, Harvey RB et al (2012) Prebiotics in food animals, a potential to reduce foodborne pathogens and disease. Roman Biotechnol Let 17(6):7808–7816

    CAS  Google Scholar 

  • Carroll SM, DePeters EJ, Rosenberg M (2006) Efficacy of a novel whey protein gel complex to increase the unsaturated fatty acid composition of bovine milk fat. J Dairy Sci 89(2):640–650

    CAS  PubMed  Google Scholar 

  • Chapman CMC, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50(1):1–17

    CAS  PubMed  Google Scholar 

  • Chaucheyras-Durand F, Durand H (2010) Probiotics in animal nutrition and health. Benef Microbes 1(1):3–9

    CAS  PubMed  Google Scholar 

  • Cheema U, Younas M, Sultan J et al (2011) Antimicrobial peptides: an alternative of antibiotics in ruminants. Adv Agric Biotechnol 2:15–21

    Google Scholar 

  • Chiquette J (2009) Evaluation of the protective effect of probiotics fed to dairy cows during a subacute ruminal acidosis challenge. Anim Feed Sci Technol 153(3–4):278–291

    CAS  Google Scholar 

  • Cobellis G, Trabalza-Marinucci M, Yu Z (2016) Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: a review. Sci Total Environ 545–546:556–568

    PubMed  Google Scholar 

  • Colmenero JJO, Broderick GA (2006) Effect of amount and ruminal degradability of soybean meal protein on performance of lactating dairy cows. J Dairy Sci 89(5):1635–1643

    CAS  PubMed  Google Scholar 

  • Das L, Bhaumik E, Raychaudhuri U et al (2012) Role of nutraceuticals in human health. J Food Sci Technol 49(2):173–183

    CAS  PubMed  Google Scholar 

  • de Mejia EG, Dia VP (2010) The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev 29(3):511–528

    CAS  PubMed  Google Scholar 

  • Dormán G, Flachner B, Hajdú I et al (2016) Target identification and polypharmacology of nutraceuticals. In: Gupta RC (e) (ed) Nutraceuticals: efficacy, safety and toxicity. Academic, Amsterdam, pp 263–286

    Google Scholar 

  • Drackley JK (2004) Overview of fat digestion and metabolism in dairy cows. Illinois Livestock Trail, University of Illinois. http://livestocktrail.illinois.edu/uploads/dairynet/papers/Overview%20of%20Fats%2004.pdf

  • El-Shewy AA (2016) Whey as a feed ingredient for lactating cattle. Sci Int 4(3):80–85

    CAS  Google Scholar 

  • Evans FD, Critchley AT (2014) Seaweeds for animal production use. J Appl Phycol 26(2):891–899

    CAS  Google Scholar 

  • FitzGerald RJ (1998) Potential uses of caseinophosphopeptides. Int Dairy J 8(5–6):451–457

    CAS  Google Scholar 

  • Fleige S, Preißinger W, Meyer HHD et al (2007) Effect of lactulose on growth performance and intestinal morphology of pre-ruminant calves using a milk replacer containing Enterococcus faecium. Animal 1(03):367–373

    CAS  PubMed  Google Scholar 

  • Froehlich KA, Abdelsalam KW, Chase C et al (2017) Evaluation of essential oils and prebiotics for newborn dairy calves. J Anim Sci 95(8):3772–3782

    CAS  PubMed  Google Scholar 

  • Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:S15–S28

    PubMed  Google Scholar 

  • Ghasemi Y, Moradian A, Mohagheghzadeh A et al (2007) Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus dispersus. J Biol Sci 7(6):904–910

    Google Scholar 

  • Guyader J, Eugène M, Doreau M et al (2017) Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. J Dairy Sci 100(3):1845–1855

    CAS  PubMed  Google Scholar 

  • Hamasalim HJ (2016) Synbiotic as feed additives relating to animal health and performance. Adv Microbiol 6:288–302

    CAS  Google Scholar 

  • Hatoum R, Labrie S, Fliss I (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 19(3):421

    Google Scholar 

  • Hayashi T, Hayashi K, Maeda M et al (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59(1):83–87

    CAS  PubMed  Google Scholar 

  • Hong ZS, Kim EJ, Jin YC et al (2015) Effects of supplementing brown seaweed by-products in the diet of Holstein cows during transition on ruminal fermentation, growth performance and endocrine responses. Asian-Australas J Anim Sci 28(9):1296–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingvartsen KL, Moyes K (2013) Nutrition, immune function and health of dairy cattle. Animal 7(S1):112–122

    CAS  PubMed  Google Scholar 

  • Jayanegara A, Wina E, Takahashi J (2014) Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian-Australas J Anim Sci 27(10):1426–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenssen H, Hancock R (2009) Antimicrobial properties of lactoferrin. Biochimie 91(1):19–29

    CAS  PubMed  Google Scholar 

  • Jerónimo E, Pinheiro C, Lamy E et al (2016) Tannins in ruminant nutrition—impact on animal performance and quality of edible products. In: Combs CA (ed) Tannins: biochemistry, food sources and nutritional properties. Nova Science, New York, pp 121–168

    Google Scholar 

  • Jinturkar AS, Gujar BV, Chauhan DS, et al (2009) Effect of feeding probiotics on the growth performance and feed conversion efficiency in goat. Indian Journal of Animal Research 43(1): 49–52

    Google Scholar 

  • Kadegowda AKG, Yu L (2016) Effects of dietary lipid intake on diabetes functional dietary lipids. In: Sanders TAB (ed.) Functional dietary lipids food formulation, consumer issues and innovation for health (pp 151–176) Amsterdam Woodhead

    Google Scholar 

  • Kelly GS (2001) Conjugated linoleic acid: a review. Alt Med Rev 6(4):367–382

    CAS  Google Scholar 

  • Kieckens E, Rybarczyk J, Cox E et al (2018) Antibacterial and immunomodulatory activities of bovine lactoferrin against Escherichia coli O157:H7 infections in cattle. Biometals 31(3):321–330

    CAS  PubMed  Google Scholar 

  • Kirk DD, Rempel R, Pinkhasov J et al (2004) Application of Quillaja saponaria extracts as oral adjuvants for plant-made vaccines. Expert Opin Biol Ther 4(6):947–958

    CAS  PubMed  Google Scholar 

  • Kumari S, Pundhir S, Priya P, et al (2014) EssOilDB: a database of essential oils reflecting terpene composition and variability in the plant kingdom. Database 2014:bau120

    Google Scholar 

  • Maamouri O, Selmi H, M’hamdi N (2014) Effects of yeast (Saccharomyces cerevisiae) feed supplement on milk production and its composition in Tunisian Holstein Friesian cows. Sci Agric Bohem 45(3):170–174

    Google Scholar 

  • Madeira MS, Cardoso C, Lopes PA et al (2017) Microalgae as feed ingredients for livestock production and meat quality: a review. Livest Sci 205:111–121

    Google Scholar 

  • Maia MRG, Fonseca AJM, Oliveira HM et al (2016) The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci Rep 6(1):323–321

    Google Scholar 

  • Makkar HPS, Tran G, Heuzé V et al (2016) Seaweeds for livestock diets: a review. Anim Feed Sci Technol 212:1–17

    CAS  Google Scholar 

  • Malkoski M, Dashper SG, O’Brien-Simpson NM et al (2001) Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob Agents Chemother 45(8):2309–2315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel S, Packer L, Youdim MBH et al (2005) Proceedings from the “Third International Conference on Mechanism of Action of Nutraceuticals”. J Nutr Biochem 16(9):513–520

    CAS  PubMed  Google Scholar 

  • McGrath J, Duval SM, Tamassia LFM et al (2018) Nutritional strategies in ruminants: a lifetime approach. Res Vet Sci 116:28–39

    PubMed  Google Scholar 

  • Mine Y, Shahidi F (2005) Nutraceutical proteins and peptides in health and disease: an overview. In: Mine Y, Shahidi F (e) (eds) Nutraceutical proteins and peptides in health and disease. CRC, Boca Raton, pp 3–9

    Google Scholar 

  • Mir PS, McAllister TA, Scott S et al (2004) Conjugated linoleic acid–enriched beef production. Am J Clin Nutr 79(6S):1207S–1211S

    CAS  PubMed  Google Scholar 

  • Mirzaei-Aghsaghali A, Maheri-Sis N (2011) Importance of “physically effective fibre” in ruminant nutrition: a review. Ann Biol Res 2(3):262–270

    CAS  Google Scholar 

  • Moarrab A, Ghoorchi T, Ramezanpour S et al (2016) Effect of synbiotic on performance, intestinal morphology, fecal microbial population and blood metabolites of suckling lambs. Iran J Appl Anim Sci 6(3):621–628

    CAS  Google Scholar 

  • Morales R, Ungerfeld EM (2015) Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: a review. Chil J Agric Res 75(2):239–248

    Google Scholar 

  • Moreira LM, Leonel FP, Vieira RAM et al (2013) A new approach about the digestion of fibers by ruminants. R Brasil Saúde Prod Anim 14(2):382–395

    Google Scholar 

  • Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86(13):2010–2037

    CAS  Google Scholar 

  • Naumann HD, Tedeschi LO, Zeller WE et al (2017) The role of condensed tannins in ruminant animal production: advances, limitations and future directions. R Bras Zootec 46(12):929–949

    Google Scholar 

  • Nicoletti M (2016) Microalgae nutraceuticals. Foods 5(3):54

    PubMed Central  Google Scholar 

  • Oyama LB, Girdwood SE, Cookson AR et al (2017) The rumen microbiome: an underexplored resource for novel antimicrobial discovery. NPJ Biofilms Microbiomes 3(1):33

    PubMed  PubMed Central  Google Scholar 

  • Palmquist DL, Conrad HR (1978) High fat rations for dairy cows effects on feed intake, milk and fat production, and plasma metabolites. J Dairy Sci 61(7):890–901

    CAS  Google Scholar 

  • Palou A, Bonet ML (2007) Controlling lipogenesis and thermogenesis and the use of ergogenic aids for weight control. In: Henry CJK (ed) Novel food ingredients for weight control. Woodhead Publishing, Cambridge, pp 58–103

    Google Scholar 

  • Parish J (2007) Effective fiber in beef cattle diets. Cattle Business in Mississippi. https://extension.msstate.edu/sites/default/files/topic-files/cattle-business-mississippi-articles/cattle-business-mississippi-articles-landing-page/mca_mar2007.pdf

  • Patra AK (2011) Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J Anim Vet Adv 6(5):416–428

    CAS  Google Scholar 

  • Patra AK, Saxena J (2009) The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr Res Rev 22(02):204–219

    CAS  PubMed  Google Scholar 

  • Piñeiro-Vázquez AT, Canul-Solís JR, Alayón-Gamboa JA et al (2015) Potential of condensed tannins for the reduction of emissions of enteric methane and their effect on ruminant productivity. Arch Med Vet 47:263–272

    Google Scholar 

  • Pratt R, Daniels TC, Eiler JJ et al (1944) Chlorellin, an antibacterial substance from Chlorella. Science 99(1944):351–352

    CAS  PubMed  Google Scholar 

  • Radivojević M, Grubić G, Šamanc H et al (2011) Heat treated soybeans in the nutrition of high producing dairy cows. Afr J Biotechnol 10(19):3929–3937

    Google Scholar 

  • Radzikowski D (2017) Effect of probiotics, prebiotics and synbiotics on the productivity and health of dairy cows and calves. World Sci News 78:193–198

    CAS  Google Scholar 

  • Retta KS (2016) Role of probiotics in rumen fermentation and animal performance: a review. Int J Livest Prod 7(5):24–32

    CAS  Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(S2):S1–S63

    CAS  PubMed  Google Scholar 

  • Roodposhti P, Dabiri N (2012) Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian-Australas J Anim Sci 25(9):1255–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saker KE, Fike JH, Veit H et al (2004) Brown seaweed (Tasco™) treated conserved forage enhances antioxidant status and immune function in heat-stressed wether lambs. J Anim Physiol Anim Nutr 88(3–4):122–130

    CAS  Google Scholar 

  • Saleem AM, Zanouny AI, Singer AM (2017) Growth performance, nutrients digestibility, and blood metabolites of lambs fed diets supplemented with probiotics during pre- and post-weaning period. Asian-Australas J Anim Sci 30(4):523–530

    CAS  PubMed  Google Scholar 

  • Salem MB, Fraj M (2007) The effects of feeding liquid acid whey in the diet of lactating dairy cows on milk production and composition. J Cell Anim Biol 1(1):7–10

    Google Scholar 

  • Savoini G, Agazzi A, Invernizzi G et al (2010) Polyunsaturated fatty acids and choline in dairy goats nutrition: production and health benefits. Small Rumin Res 88(2–3):135–144

    Google Scholar 

  • Schingoethe DJ (1976) Whey utilization in animal feeding: a summary and evaluation. J Dairy Sci 59(3):556–570

    CAS  Google Scholar 

  • Shimazaki K, Kawano N, Yoo YC (1991) Comparison of bovine, sheep and goat milk lactoferrins in their electrophoretic behavior, conformation, immunochemical properties and lectin reactivity. Comp Biochem Physiol B 98(2–3):417–422

    CAS  PubMed  Google Scholar 

  • Škrovánková S (2011) Seaweed vitamins as nutraceuticals. Adv Food Nutr Res 64:357–369

    PubMed  Google Scholar 

  • Spickler AR, Roth JA (2003) Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Int Med 17:273–281

    Google Scholar 

  • Stamey JA, Shepherd DM, de Veth MJ et al (2012) Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle. J Dairy Sci 95(9):5269–5275

    CAS  PubMed  Google Scholar 

  • Suarez C, Guevara CA (2018) Probiotic use of yeast Saccharomyces cerevisiae in animal feed. Res J Zool 1:1

    Google Scholar 

  • Sun DS, Jin X, Shi B et al (2017) Effects of Yucca schidigera on gas mitigation in livestock production: a review. Braz Arch Biol Technol 60(0):e17160359

    Google Scholar 

  • Tackett VL, Bertrand JA, Jenkins TC et al (1996) Interaction of dietary fat and acid detergent fiber diets of lactating dairy cows. J Dairy Sci 79(2):270–275

    CAS  PubMed  Google Scholar 

  • Tiven NC, Siwa IP, Joris L (2016) Effects of Citrus hystryx as fat protector on unsaturated fatty acids, cholesterol and chemical composition of lamb meat. J Indones Trop Anim Agric (1):45–49

    Google Scholar 

  • Tsai YC, Castillo LS, Hardison WA et al (1967) Effect of dietary fiber level on lactating dairy cows in the humid tropics. J Dairy Sci 50(7):1126–1129

    Google Scholar 

  • Tsuda T, Sasaki Y, Kawashima R (1991) Physiological aspects of digestion and metabolism in ruminants. In: Tsuda T, Sasaki Y, Kawashima R (eds) Proceedings of the Seventh International Symposium on Ruminant Physiology, San Diego Academic

    Google Scholar 

  • Ure AL, Dhiman TR, Stern MD et al (2005) Treated extruded soybean meal as a source of fat and protein for dairy cows. Asian-Australas J Anim Sci 18(7):980–989

    CAS  Google Scholar 

  • Uyeno Y, Shigemori S, Shimosato T (2015) Effect of probiotics/prebiotics on cattle health and productivity microbes and environments. Microbes Environ 30(2):126–132

    PubMed  PubMed Central  Google Scholar 

  • Vahmani P, Mapiye C, Prieto N et al (2015) The scope for manipulating the polyunsaturated fatty acid content of beef: a review. J Anim Sci Biotechnol 6(1):29

    PubMed  PubMed Central  Google Scholar 

  • Vakili AR, Khorrami B, Mesgaran MD et al (2013) The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Australas J Anim Sci 26(7):935–944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Tran L, Malla BA, Kumar S et al (2016) Polyunsaturated fatty acids in male ruminant reproduction—a review. Asian-Australas J Anim Sci 30(5):622–637

    PubMed  PubMed Central  Google Scholar 

  • Vasta V, Luciano G (2011) The effects of dietary consumption of plants secondary compounds on small ruminants’ products quality. Small Rumin Res 101(1–3):150–159

    Google Scholar 

  • Vohra A, Syal P, Madan A (2016) Probiotic yeasts in livestock sector. Anim Feed Sci Technol 219:31–47

    Google Scholar 

  • Wallace RJ, Newbold CJ (1992) Probiotics for ruminants. In: Fuller R (ed) Probiotics. Springer, Dordrecht, pp 317–353

    Google Scholar 

  • Wang Y, Xu Z, Bach SJ et al (2008) Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim Feed Sci Technol 145(1–4):375–395

    CAS  Google Scholar 

  • Wang S, Zeng X, Yang Q et al (2016) Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci 17(5):603

    PubMed Central  Google Scholar 

  • Wereme D, Grongnet JF, Gelbcke D (2016) Using unmarketable egg powder as protein supplement in pre-ruminant lamb milk replacer. Direct Res J Agric Food Sci 4(9):271–279

    Google Scholar 

  • Westendarp H (2005) Saponins in nutrition of swine, poultry and ruminants. Dtsch Tierarztl Wochenschr 112(2):65–70

    CAS  PubMed  Google Scholar 

  • Williams AR, Fryganas C, Ramsay A et al (2014) Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS One 9(5):e97053

    PubMed  PubMed Central  Google Scholar 

  • Woodford JA, Jorgensen NA, Barrington GP (1986) Impact of dietary fiber and physical form on performance of lactating dairy cows. J Dairy Sci 69(4):1035–1047

    CAS  PubMed  Google Scholar 

  • Xiao CW (2008) Health effects of soy protein and isoflavones in humans. J Nutr 138(6):1244S–1249S

    CAS  PubMed  Google Scholar 

  • Xiao CW, L’Abbé MR, Gilani GS et al (2004) Dietary soy protein isolate and isoflavones modulate hepatic thyroid hormone receptors in rats. J Nutr 134(4):743–749

    CAS  PubMed  Google Scholar 

  • Zebeli Q, Dijkstra J, Tafaj M et al (2008) Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. J Dairy Sci 91(5):2046–2066

    CAS  PubMed  Google Scholar 

  • Zhang H, Wang Z, Liu G et al (2011) Effect of dietary fat supplementation on milk components and blood parameters of early-lactating cows under heat stress. Slovak J Anim Sci 44(2):52–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yurdakok-Dikmen, B., Filazi, A. (2019). Nutraceuticals in Cattle Health and Diseases. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_44

Download citation

Publish with us

Policies and ethics