Skip to main content

Nutraceuticals for Control of Ticks, Fleas, and Other Ectoparasites

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

The ticks, fleas, mosquitoes, and other ectoparasites, in addition of being nuisance, transmit infectious diseases in companion and livestock animals and wildlife. The use of ectoparasiticides on companion and farm animals appears to be inevitable. Currently, synthetic insecticides of various classes are used to combat ectoparasites on animals. Some of the synthetic insecticides are used as ovicides or larvicides, while others are used as adulticides. But due to their greater toxicity, lack of selective toxicity, and pesticide resistance in insects, their use has been on decline. During the past two decades, the quest for natural products as an alternative to synthetic pesticides has been recognized. This chapter describes some biopesticides which can be used to control ectoparasites in pets and farm animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghaffar F, Al-Quraishy S, Al-Rasheid KA et al (2012) Efficacy of a single treatment of head lice with a neem seed extract: an in vivo and in vitro study on nits and motile stages. Parasitol Res 110(1):277–280

    PubMed  Google Scholar 

  • Ansari MA, Razdan RK (1995) Relative efficacy of various oils in repelling mosquitoes. Indian J Malariol 32:104–111

    CAS  PubMed  Google Scholar 

  • Ansari MA, Vasudevan P, Tandon M et al (1999) Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresour Technol 71:267–271

    Google Scholar 

  • Ansari MA, Mittal PK, Razdan RK et al (2005) Larvicidal and mosquito repellent activities of pine (Pinus longifolia, Family: Pinaceae) oil. J Vect Borne Dis 42:95–99

    CAS  Google Scholar 

  • Attia S, Lognay G, Heuskin S et al (2016) Insecticidal activity of Lavandula angustifolia Mill against the pea aphid Acyrthosiphon pisum. J Entomol Zool Stud 4(1):118–122

    Google Scholar 

  • Balandrin MFS, Lee SM, Klocke JA (1988) Biologically active volatile organosulfur compounds from seeds of the neem tree, Azadirachta indica (Meliaceae). J Agric Food Chem 36:1048–1054

    CAS  Google Scholar 

  • Barasa SS, Ndiege IO, Lwande W et al (2002) Repellent activities of stereoisomers of p-methane-3,8-diols against Anopheles gambiae (Diptera: Culicidae). J Med Entomol 39:736–741

    CAS  PubMed  Google Scholar 

  • Benelli G, Canale A, Conti B (2013) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacol Online 47:44–51

    Google Scholar 

  • Benelli G, Murugan K, Panneerselvam C et al (2015) Old ingredients for a few new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

    PubMed  Google Scholar 

  • Benelli G, Canale A, Toniolo C et al (2016) Neem (Azadirachta indica): towards the ideal insecticide? Nat Prod Res. https://doi.org/10.1080/14786419..2016.1214834

  • Berenbaum MR (1989) North American ethnobotanicals as source of novel plant-based insecticides. In: Arnason J, Philogene B, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington, pp 11–24. https://doi.org/10.1021/bk-1989-0387.ch002

    Chapter  Google Scholar 

  • Bissinger BW, Roe RM (2010) Tick repellents: past, present, and future. Pest Biochem Physiol 96:63–79

    CAS  Google Scholar 

  • Bissinger BW, Apperson CS, Sonenshine DE et al (2009) Efficacy of the new repellent BioUD® against three species of ixodid ticks. Exp Appl Acarol 48(3):239–250

    CAS  PubMed  Google Scholar 

  • Campbell C, Gries G (2012) Is soybean oil an effective repellent against Aedes aegypti? Canad Entomol 142(4):405–415

    Google Scholar 

  • Carpinella C, Defagó T, Valladares G et al (2003) Antifeedant and insecticide properties of a limonoids from Melia azedarach (Meliaceae) with potential use for pest management. J Agr Food Chem 51:369–374

    CAS  Google Scholar 

  • Carroll SP, Loye J (2006) PMD, a registered botanical mosquito repellent with DEET-like efficacy. J Am Mosq Control Assoc 22:507–514

    PubMed  Google Scholar 

  • Castillo M, Martinez-Pardo R, Garcera MD et al (1998) Biological activities of natural sesquiterpene lactones and the effect of synthetic sesquiterpene derivatives on insect juvenile hormone biosynthesis. J Agric Food Chem 46:2030–2035

    CAS  Google Scholar 

  • Céspedes CL, Torres P, Marín JC et al (2004) Insect growth inhibition by tocotrienols and hydroquinones from Roldana barba-johannis. Phytochemistry 65:1963–1975

    PubMed  Google Scholar 

  • Chaieb K, Hajlaoui H, Zmontar T et al (2007) The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res 21:501–506

    CAS  PubMed  Google Scholar 

  • D’Incao MP, Kanak N, Fiuza LM (2013) Phytochemicals taken from plants with potential in management of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Biopest 6(2):182–192

    Google Scholar 

  • Dadé M, Zeinsteger P, Bozzolo F et al (2018) Repellent and lethal activities of extracts from fruits of Melia azedarach L. (Chinaberry, Meliaceae) against Triatoma infestans. Font Vet Sci 5:158. https://doi.org/10.3389/fvets.2018.00158

    Article  Google Scholar 

  • D-Limonene (2017) National Center for Biotechnology Information. US National Library of Medicine

    Google Scholar 

  • El-Hag EA, El Nadi AH, Zaiton AA (1999) Toxic and growth retarding effects of three plant extracts on Culex pipiens larvae (Diptera: Culicidae). Phytother Res 13:388–392

    CAS  PubMed  Google Scholar 

  • Garboui SS (2008) Plant-derived chemicals as tick repellents. Doctoral Dissertation, Uppsala University, Uppsala, Sweden

    Google Scholar 

  • Goncharov N, Orekhov AN, Voitenko N et al (2016) Organosulfur compounds as nutraceuticals. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic Press, Amsterdam, pp 555–568

    Google Scholar 

  • Goodyer LI, Croft AM, Frances SP et al (2010) Expert review of the evidence base for arthropod bite avoidance. J Travel Med 17:182–192

    PubMed  Google Scholar 

  • Green M, Singer JM, Sutherland DJ et al (1991) Larvicidal activity of Tagetus minuta (Marigold) towards Aedes aegypti. J Am Mosq Control Assoc 7:282–286

    CAS  PubMed  Google Scholar 

  • Greenstock DL, Larrea Q (1972) Garlic as an insecticide. Doubleday Research Association, Braintree, England, p 12

    Google Scholar 

  • Gupta RC (2006) In: Gupta RC (ed) Toxicology of organophosphate and carbamate compounds. Academic Press/Elsevier, Amsterdam, pp 1–763

    Google Scholar 

  • Han J, Lin WH, Xu RS et al (1991) Studies on the chemical constituents of Melia azedarach Linn. Yao Xue Xue Bao 26(6):426–429

    CAS  PubMed  Google Scholar 

  • Howard AFV, Adongo EA, Githure JVJ (2011) Effects of a botanical larvicide derived from Azadirachta indica (the neem tree) on oviposition behavior in Anopheles gambiae s.s. mosquitoes. J Med Plant Res 5:1948–1954

    Google Scholar 

  • Isman MB, Machial CM (2006) Chapter 2: Pesticides based on plant essential oils: from traditional practice to commercialization. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds. Elsevier, Amsterdam, pp 29–44

    Google Scholar 

  • Jaenson TGT, Garboui SS, Palsson K (2006) Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari: Ixodidae) in the laboratory and field. J Med Entomol 43:731–736

    CAS  PubMed  Google Scholar 

  • Jirovetz L, Buchbauer G, Stoilova I et al (2006) Chemical composition and antioxidant properties of clove leaf essential oil. J Agr Food Chem 54:6303–6307

    CAS  Google Scholar 

  • Kim EH, Kim HK, Choi DH et al (2003) Acaricidal activity of clove bud oil compounds against Tyrophagus putrescentiae (Acari: Acaridae). Appl Entomol Zool 38:261–266

    CAS  Google Scholar 

  • Kim JK, Kang CS, Lee JK et al (2005) Evaluation of repellency effect of two natural aroma mosquito repellent compounds, citronella and citronellal. Entomol Res 35(2):117–120

    CAS  Google Scholar 

  • Kim YW, Kim MJ, Chung BY et al (2013) Safety evaluation and risk assessment of d-limonene. J Toxicol Environ Health Part B 16(1):17–38

    CAS  Google Scholar 

  • Kitchen LW, Lawrence KL, Coleman RE (2009) The role of the United States military in the development of vector control products, including insect repellents, insecticides, and bed nets. J Vector Ecol 34:50–61

    PubMed  Google Scholar 

  • Krstin S, Sobeh M, Braun MS et al (2018a) Anti-parasitic activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae. Medicine 5:37

    Google Scholar 

  • Krstin S, Sobeh M, Braun MS et al (2018b) Tulbaghia violacea and Allium ursinum extracts exhibit anti-parasitic and antimicrobial activities. Molecules 23:313

    PubMed Central  Google Scholar 

  • Kumar VS, Navaratnam V (2013) Neem (Azadirachta indica): prehistory to contemporary medicinal uses to humankind. Asian Pac J Trop Biomed 3:505–314

    PubMed  PubMed Central  Google Scholar 

  • Kumar P, Mishra S, Malik A et al (2011) Insecticidal properties of Mentha species: a review. Ind Crop Prod 34(1):802–817

    CAS  Google Scholar 

  • Kumar D, Rahal A, Malik JK (2016) Neem extract. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic Press, Amsterdam, pp 585–597

    Google Scholar 

  • Lin N (2015) Insecticide resistance in mosquitos: impact, mechanisms, and research directions. Annu Rev Entomol 60:34–41

    Google Scholar 

  • Lucantoni L, Giusti F, Cristofaro M et al (2006) Effects of neem extract on blood feeding, oviposition and oocyte ultrastructure in Anopheles stephensi Liston (Diptera: Culicidae). Tissue Cell 38:361–371

    CAS  PubMed  Google Scholar 

  • Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis: an update. Apoptosis 8:115–128

    CAS  PubMed  Google Scholar 

  • Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malaria J 10(Suppl):S11

    CAS  Google Scholar 

  • Marrs TC (2012) Insecticides that interfere with insect growth and development. In: Marrs TC (ed) Mammalian toxicology of insecticides. RSC Publ, Cambridge, pp 221–253

    Google Scholar 

  • Marrs TC, Dewhurst IC (2012) Toxicology of some insecticides not discussed elsewhere. In: Marrs TC (ed) Mammalian toxicology of insecticides. RSC Publ, Cambridge, pp 288–301

    Google Scholar 

  • McGaw LJ, Eloff JN (2010) Methods for evaluating efficacy of ethnoveterinary medicinal plants. In: Katerere DR, Luseba D (eds) Ethnoveterinary botanical medicine. Herbal medicines for animal health. CRC Press, Boca Raton, FL, pp 1–24

    Google Scholar 

  • Miro Specos MM, Garcia JJ, Tornesello J et al (2010) Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg 104:653–658

    Google Scholar 

  • Mkolo NM (2008) Anti-tick properties of some of the traditionally used plant-based products in South Africa. MSc Thesis, University of Limpopo, South Africa.

    Google Scholar 

  • Mordue (L)AJ, Blackwell A (1993) Azadirachtin; an update. Insect Physiol 39:903–924

    CAS  Google Scholar 

  • Mordue (L)AJ, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its actions against insects. Ann Enomol Soc Brasil 29:615–632

    CAS  Google Scholar 

  • Mougabure-Cueto G, Picollo MI (2015) Insecticide resistance in vector Chagas disease; Evolution, mechanisms and management. Acta Trop 149:70–85

    CAS  PubMed  Google Scholar 

  • Mulla MS, Tianyun S (1999) Activity and biological effects of neem products against arthropods of medical and veterinary importance. J Am Mosq Control Assoc 15(2):133–152

    CAS  PubMed  Google Scholar 

  • National Academies of Science (1992) Neem, a tree for solving global problems. National Academies Press, Washington, DC

    Google Scholar 

  • Nchu F (2004) Developing methods for the screening of ethnoveterinary plants for tick control. MSc Thesis, Medical University of South Africa

    Google Scholar 

  • Nicoletti M, Mariani S, Maccioni O et al (2012) Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito. Parasitol Res 111:205–213

    PubMed  Google Scholar 

  • Nicoletti M, Murugan K, Benelli G (2016a) Chapter 11: emerging insect-borne diseases of agricultural, medical and veterinary importance. In: Trdan S (ed) Emerging insect-borne diseases of agriculture, medical and veterinary importance. Intech, Rijeka, pp 219–241

    Google Scholar 

  • Nicoletti M, Murugan K, Canale A et al (2016b) Neem-borne molecules as eco-friendly control tools against mosquito vectors of economic importance. Curr Org Chem 20(25):2681–2689. https://doi.org/10.2174/138527282-0666160218233923

    Article  CAS  Google Scholar 

  • Okumu FO, Knols BGJ, Fillinger U (2007) Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malaria J 6:63

    Google Scholar 

  • PÃ¥lsson K, Jaenson TG, Baeckström P et al (2008) Tick repellent substances in the essential oil of Tencetum vulgare. J Med Entomol 45(1):88–93

    PubMed  Google Scholar 

  • Perrucci S, Macchioni G, Cioni PL et al (1995) Structure/activity relationship of some natural monoterpenes as acaricides against Psoroptes cuniculi. J Nat Prod 8:1261–1264

    Google Scholar 

  • Pulido KDP, Dulcey AJC, Martínez JHI (2017) New caffeic acid derivative from Tithonia diversifolia (Hemsl.) A. Gray butanolic extract and its antioxidant activity. Food Chem Toxicol 109:1079–1085

    Google Scholar 

  • Purohit AM, Rezende AR, Lopez Baldin EL et al (2011) Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases: a review. Planta Med 77:618–630

    Google Scholar 

  • Rossi GD, Santos CD, Carvalho GA et al (2012) Biochemical analysis of a castor bean extract and its insecticidal effects against Spodoptera frugiperda (smith) (Lepidoptera: noctuidae). Neotrop Entomol 41:503–509

    CAS  PubMed  Google Scholar 

  • Sadeghi-Nejad B, Saki J (2014) Effect of aqueous Allium cepa and Ixora brachiata root extract on Leishmania major promastigotes. Jundishapur J Nat Pharm Prod 9:e15442

    PubMed  PubMed Central  Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N et al (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111

    CAS  PubMed  Google Scholar 

  • Saleheen D, Ali SA, Yasinzai MM (2004) Antileishmanial activity of aqueous onion extract in vitro. Fitoterapia 75:9–13

    PubMed  Google Scholar 

  • Sami AJ (2014) Azadirachta indica derived compounds as inhibitors of digestive alpha-amylase in insect pests: potential biopesticides in insect pest management. Eur J Exp Biol 4:259–264

    CAS  Google Scholar 

  • Sami AJ, Akhtar MW (1993) Purification and characterization of two low-molecular weight endonucleases of Cellulomonas flavigena. Enzyme Microb Technol 15:586–592

    CAS  Google Scholar 

  • Sami AJ, Shakoori AR (2007) Extracts of plant leaves have inhibitory effect on the cellulase activity of whole body extracts of insects: a possible recipe for bioinsecticides. Proc Pakistan Congr Zool 27:105–118

    Google Scholar 

  • Sami AJ, Bilal S, Khalid M et al (2016) Effect of crude neem (Azadirachta indica) powder and azadirachtin on the growth and acetylcholinesterase activity of Tribolium castaneum (Herbst) (Coleoptera; Tenebrionidae). Pakistan J Zool 48:881–886

    CAS  Google Scholar 

  • Shapiro R (2012) Prevention of vector transmitted diseases with clove oil insect repellent. J Pediatr Nurs 27:346–349

    PubMed  Google Scholar 

  • Sharma VP, Dhiman RC (1993) Neem oil as a sand fly (Diptera: Psychodidae) repellent. J Am Mosq Control Assoc 9:364–366

    CAS  PubMed  Google Scholar 

  • Sharma VP, Ansari MA, Razdan RK (1993) Mosquito repellent action of neem (Azadirachta indica) oil. J Am Mosq Control Assoc 9:359–360

    CAS  PubMed  Google Scholar 

  • Simmonds MS, Jarvis AP, Johnson S et al (2004) Comparison of anti-feedant and insecticidal activity of nimbin and salannin photo-oxidation products with neem (Azadirachta indica) limonoids. Pest Manag Sci 60:459–464

    CAS  PubMed  Google Scholar 

  • Singh YP, Singh RA (2010) In silico studies of organosulfur-functional active compounds in garlic. Biofactors 36(4):297–311

    PubMed  Google Scholar 

  • Singh N, Mishra AK, Saxena A (1996) Use of neem cream as a mosquito repellent in tribal areas of central India. Indian J Malaria 33:99–102

    CAS  Google Scholar 

  • Sinniah B, Sinniah D, Ibrahim J (1994) Effect of neem oil on mosquito larvae. Mosq Borne Dis Bull 1:90–93

    Google Scholar 

  • Sun J (2007) D-Limonene: safety and clinical applications. Altern Med Rev 12(3):259–264

    PubMed  Google Scholar 

  • Szewczuk VD, Mongelli ER, Pomilio AB (2003) Antiparasitic activity of Melia azedarach growing in Argentina. Mol Med Chem 1:54–57

    Google Scholar 

  • Tabanca N, Wang M, Avonto C et al (2013) Bioactivity-guided investigation of geranium essential oils as natural tick repellents. J Agric Food Chem 61:4101–4107

    CAS  PubMed  Google Scholar 

  • Thacker JRM (2002) An introduction to arthropods pest control. Cambridge University Press, Cambridge, UK, p 343

    Google Scholar 

  • Thembo MK (2006) The anti-tick effects of Senna italica ssp. arachoides extracts on adults Hyalomma marginatum rufipes. MSc Thesis, University of Limpopo, South Africa

    Google Scholar 

  • Tianyun S, Mulla MS (1998) Ovicidal activity of neem products (Azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Am Mosq Control Assoc 14:204–209

    Google Scholar 

  • Trigg JK (1996) Evaluation of a Eucalyptus-based repellent against Anopheles Spp. in Tanzania. J Am Mosq Control Ass 12(2):243–246

    CAS  Google Scholar 

  • US EPA (2012) Biopesticide registration document. Cold pressed neem oil. PC Code 025006. Office of Pesticide Programs, Washington, DC

    Google Scholar 

  • Valladares GR, Ferreyra D, Defago MT et al (1999) Effects of Melia azedarach on Triatoma infestans. Fitoterapia 70(4):421–424

    Google Scholar 

  • Varela L, Lavaggi ML, Cabrera M et al (2012) Bioactive-guided identification of labdane diterpenoids from aerial parts of Aristeguietia glutinosa Lam. as anti-Trypanosoma cruzi agents. Nat Prod Commun 7:1139–1142

    CAS  PubMed  Google Scholar 

  • Varela J, Serna E, Torres S et al (2014) In vivo anti-Trypanosoma cruzi activity of hydro-ethanolic extract and isolated active principles from Aristeguietia glutinosa and mechanism of action studies. Molecules 19:8488–8502

    PubMed  PubMed Central  Google Scholar 

  • Vietmeyer N (ed) (1992) Neem: a tree for solving global problems. National Academy Press, Washington, DC

    Google Scholar 

  • Wabwoba BW, Anjili CO, Ngeiywa MM et al (2010) Experimental chemotherapy with Allium sativum (Liliaceae) methanolic extract in rodents infected with Leishmania major and Leishmania donovani. J Vector Borne Dis 47:160–167

    PubMed  Google Scholar 

  • Weiner L, Shin I, Shimon LJ et al (2009) Thiol-disulfide organization in alliin lyase (alliinase) from garlic (Allium sativum). Protein Sci 18:196–205

    CAS  PubMed  Google Scholar 

  • Weldon PJ, Carroll JF, Kramer M et al (2011) Anointing chemicals and hematophagous arthropods: responses by ticks and mosquitoes to citrus (Rutaceae) peel exudates and monoterpene components. J Chem Ecol 37(4):348–359

    CAS  PubMed  Google Scholar 

  • Wink M (2012) Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 17:12771–12791

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO, Geneva

    Google Scholar 

  • World Health Organization (1992) Expert Committee on Vector Biology and Control. Vector resistance to pesticides: fifteenth report of the Expert Committee on Vector Biology and Control. WHO Technical Report Series 818, pp 1–62

    Google Scholar 

  • Yang YC, Lee SH, Lee WJ et al (2003) Ovicidal, and adulticidal effects of Eugenia caryophyllata bud and leaf oil compounds on Pediculus capitis. J Agric Food Chem 51:4884–4888

    CAS  PubMed  Google Scholar 

  • Zheng GQ, Kenney PM, Lam LKT (1992) Sesquiterpenes from clove (Eugenia caryophyllata). J Nat Prod 55:999–1003

    CAS  PubMed  Google Scholar 

  • Ziba MM (1995) Preliminary laboratory trial of neem on Anopheles and culex larvae in Zambia. Cent Afr J Med 41:137–138

    CAS  PubMed  Google Scholar 

  • Zoroloni A (2007) Evaluation of plants used for the control of animal ectoparasitoses in Southern Ethiopia (Oromiya and Somali regions). MSc Thesis, University of Pretoria, South Africa

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Robin B. Doss for her technical assistance in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R.C., Doss, R.B., Srivastava, A., Lall, R., Sinha, A. (2019). Nutraceuticals for Control of Ticks, Fleas, and Other Ectoparasites. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_43

Download citation

Publish with us

Policies and ethics