Skip to main content

Nutraceuticals in Mastitis

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine
  • 2925 Accesses

Abstract

Acute and chronic forms of mastitis are the costliest disease in the dairy industry. Resistance of microbial pathogens to antimicrobials approved for clinical use is a significant threat to controlling mastitic pathogens and is a public health issue. In some countries, the cost of antimicrobial drugs reduces their usage, and ethnic remedies are being used. Organic dairies have prioritized the maintenance of mammary health and the use of nutraceuticals to prevent and treat mastitis. In some jurisdictions, dairy animals on organic farms that receive antibiotics are disqualified for life as dairy animals. There is conflicting evidence on the efficacy of nutraceuticals, homeopathy, and traditional medicine in treating mastitis and a lack of standards for evaluation of these remedies. Studies are showing that nutraceuticals can be efficacious. Phytotherapeutics generally are complex chemical mixtures and can be multifaceted in mechanisms of action. Intramammary infusions of probiotics and bacteriocins are being shown to be efficacious, and their mechanisms of action include being an immune stimulant. Immunotherapy with antibodies and immune system components can be efficacious. Intermingled treatments with nutraceuticals and pharmaceuticals can be more efficacious than either treatment alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Eco-Mast, 10 mL/tube, Daehan New Pharm (Seoul, South Korea)

  2. 2.

    Daesung Gentamicin Cream, Daesung Microbiological Labs (Seoul, South Korea)

  3. 3.

    The bovine udder has four distinct mammary glands with each gland draining into one teat.

  4. 4.

    25 mg cefoperazone/mL, Mastiwock, Wockhardt Laboratories (Mumbai, India)

  5. 5.

    Dahua Traditional Chinese Medicine Company (Nanjing, Jiangsu Province)

  6. 6.

    Sigma-Aldrich

  7. 7.

    Sigma-Aldrich

  8. 8.

    Control of Pharmaceutical and Biological Product (Beijing, China)

  9. 9.

    Gentamicin Cream, Daesung Microbiological Labs (Korea)

  10. 10.

    Eco-Mast 10 mL/tube containing 0.9 mL oregano oil, Daehan New Pharm (Korea)

  11. 11.

    Sigma-Aldrich Chemical Co. (St Louis, MO)

  12. 12.

    Mastilep, Dabur Ayurvet Ltd. (Ghaziabad, India)

  13. 13.

    Indena®, SpA (Milan, Italy)

  14. 14.

    Indena SpA (Milan, Italy)

  15. 15.

    Phyto-Mast®, Penn Dutch Cow Care (Narvon, PA)

  16. 16.

    Ralco Animal Health (Marshall, MN, USA)

  17. 17.

    Cayenne, echinacea, and garlic (Arcadia, WI, USA)

  18. 18.

    https://www.dsm.com

  19. 19.

    https://www.charm.com

  20. 20.

    Quartermaster, Zoetis (Florham Park, NJ)

  21. 21.

    Orbeseal, Zoetis (Florham Park, NJ)

  22. 22.

    New AgriTech Enterprises (Locke, NY)

  23. 23.

    http://newagritech.com/

  24. 24.

    Steingassner HM (1998) Homoopathische Materia Medica fur Veterinarmediziner (Wien: Wilhelm Maudrich, Vienna)

  25. 25.

    Criteria of International Dairy Federation (Brussels, Belgium)

  26. 26.

    BCCM/LMG Bacteria Collection (Belgium)

  27. 27.

    Synulox, Pfizer Animal Health (New York, USA)

  28. 28.

    Zhejiang Silver-Elephant Bioengineering Co., Ltd. (Tiantai, Zhejiang, China)

  29. 29.

    Jilin Animal Health Products Co., Ltd. (Jilin, China)

  30. 30.

    Zhejiang Silver-Elephant Bio-Engineering Co., Ltd. (Tiantai, China)

  31. 31.

    Omu Milk Products Co., Ltd. (Fukuoka, Japan)

  32. 32.

    Meiji Seika Pharma Co., Ltd. (Tokyo, Japan)

  33. 33.

    Multimin 90, Multimin North America Inc. (Fort Collins, CO)

  34. 34.

    Natur-E granulat 40%, Pharmalett A/S (Kolding, Denmark)

  35. 35.

    Dipal Concentrate 1C4 (Delaval, Tianjin, China)

  36. 36.

    SunSmile® Fruit & Vegetable Rinse (Sunrider International, http://www.sunrider.com/eng/worldwide/offices#)

References

  • Abdalhamed AM, Zeedan GSG, Zeina H (2018) Isolation and identification of bacteria causing mastitis in small ruminants and their susceptibility to antibiotics, honey, essential oils, and plant extracts. Vet World 11(3):355–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abuelo A, Hernandez J, Benedito JL et al (2015) The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. J Anim Physiol Anim Nutr (Berl) 99(6):1003–1016

    CAS  Google Scholar 

  • Aghamohammadi M, Haine D, Kelton DF et al (2018) Herd-level mastitis-associated costs on Canadian dairy farms. Front Vet Sci 5:100

    PubMed  PubMed Central  Google Scholar 

  • Akers RM, Nickerson SC (2011) Mastitis and its impact on structure and function in the ruminant mammary gland. J Mammary Gland Biol Neoplasia 16(4):275–289

    PubMed  Google Scholar 

  • Alekish MO, Ismail ZB, Awawdeh MS et al (2017) Effects of intramammary infusion of sage (Salvia officinalis) essential oil on milk somatic cell count, milk composition parameters and selected hematology and serum biochemical parameters in Awassi sheep with subclinical mastitis. Vet World 10(8):895–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen HK, Trachsel J, Looft T et al (2014) Finding alternatives to antibiotics. Ann N Y Acad Sci 1323:91–100

    PubMed  Google Scholar 

  • Almasaudi SB, Al-Nahari AAM, Abd El-Ghany ESM et al (2017) Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J Biol Sci 24(6):1255–1261

    CAS  PubMed  Google Scholar 

  • Al-Qumber M, Tagg JR (2006) Commensal bacilli inhibitory to mastitis pathogens isolated from the udder microbiota of healthy cows. J Appl Microbiol 101(5):1152–1160

    CAS  PubMed  Google Scholar 

  • Amber R, Adnan M, Tariq A et al (2018) Antibacterial activity of selected medicinal plants of northwest Pakistan traditionally used against mastitis in livestock. Saudi J Biol Sci 25(1):154–161

    PubMed  Google Scholar 

  • Ananda Baskaran S, Kazmer GW, Hinckley L et al (2009) Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. J Dairy Sci 92(4):1423–1429

    CAS  PubMed  Google Scholar 

  • Armas F, Camperio C, Marianelli C (2017) In vitro assessment of the probiotic potential of Lactococcus lactis LMG 7930 against ruminant mastitis-causing pathogens. PLoS One 12(1):e0169543

    PubMed  PubMed Central  Google Scholar 

  • Arroyo R, Martin V, Maldonado A et al (2010) Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk. Clin Infect Dis 50(12):1551–1558

    CAS  PubMed  Google Scholar 

  • Arsenault J, Dubreuil P, Higgins R et al (2008) Risk factors and impacts of clinical and subclinical mastitis in commercial meat-producing sheep flocks in Quebec, Canada. Prev Vet Med 87(3–4):373–393

    PubMed  Google Scholar 

  • Assis BS, Germon P, Silva AM et al (2015) Lactococcus lactis V7 inhibits the cell invasion of bovine mammary epithelial cells by Escherichia coli and Staphylococcus aureus. Benef Microbes 6(6):879–886

    CAS  PubMed  Google Scholar 

  • Baravalle C, Dallard BE, Cadoche MC et al (2011) Proinflammatory cytokines and CD14 expression in mammary tissue of cows following intramammary inoculation of Panax ginseng at drying off. Vet Immunol Immunopathol 144(1–2):52–60

    CAS  PubMed  Google Scholar 

  • Baravalle C, Silvestrini P, Cadoche MC et al (2015) Intramammary infusion of Panax ginseng extract in bovine mammary gland at cessation of milking induces changes in the expression of toll-like receptors, MyD88 and NF-kB during early involution. Res Vet Sci 100:52–60

    CAS  PubMed  Google Scholar 

  • Bedard F, Biron E (2018) Recent progress in the chemical synthesis of class ii and s-glycosylated bacteriocins. Front Microbiol 9:1048

    PubMed  PubMed Central  Google Scholar 

  • Beecher C, Daly M, Berry DP et al (2009) Administration of a live culture of Lactococcus lactis DPC 3147 into the bovine mammary gland stimulates the local host immune response, particularly IL-1beta and IL-8 gene expression. J Dairy Res 76(3):340–348

    CAS  PubMed  Google Scholar 

  • Bhatt VD, Shah TM, Nauriyal DS et al (2014) Evaluation of a topical herbal drug for its in-vivo immunomodulatory effect on cytokines production and antibacterial activity in bovine subclinical mastitis. Ayu 35(2):198–205

    PubMed  PubMed Central  Google Scholar 

  • Bhattarai D, Worku T, Dad R et al (2018) Mechanism of pattern recognition receptors (PRRs) and host pathogen interplay in bovine mastitis. Microb Pathog 120:64–70

    CAS  PubMed  Google Scholar 

  • Boorn KL, Khor YY, Sweetman E et al (2010) Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. J Appl Microbiol 108(5):1534–1543

    CAS  PubMed  Google Scholar 

  • Boothe DM (2004) Balancing fact and fiction of novel ingredients: definitions, regulations and evaluation. Vet Clin North Am Small Anim Pract 34(1):7–38

    PubMed  Google Scholar 

  • Bouwstra RJ, Nielen M, Stegeman JA et al (2010a) Vitamin E supplementation during the dry period in dairy cattle. Part I: Adverse effect on incidence of mastitis postpartum in a double-blind randomized field trial. J Dairy Sci 93(12):5684–5695

    CAS  PubMed  Google Scholar 

  • Bouwstra RJ, Nielen M, Newbold JR et al (2010b) Vitamin E supplementation during the dry period in dairy cattle. Part II: Oxidative stress following vitamin E supplementation may increase clinical mastitis incidence postpartum. J Dairy Sci 93(12):5696–5706

    CAS  PubMed  Google Scholar 

  • Byung-Wook C, Chun-Nam C, Soo-Mi L et al (2015) Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli. Korean J Vet Res 55(4):253–257

    Google Scholar 

  • Camperio C, Armas F, Biasibetti E et al (2017) A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain. PLoS One 12(9):e0184218

    PubMed  PubMed Central  Google Scholar 

  • Cao LT, Wu JQ, Xie F et al (2007) Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows. J Dairy Sci 90(8):3980–3985

    CAS  PubMed  Google Scholar 

  • Carson DA, Barkema HW, Naushad S et al (2017) Bacteriocins of non-aureus Staphylococci isolated from bovine milk. Appl Environ Microbiol 83(17):e01015-17

    PubMed  PubMed Central  Google Scholar 

  • Ceotto-Vigoder H, Marques SL, Santos IN et al (2016) Nisin and lysostaphin activity against preformed biofilm of Staphylococcus aureus involved in bovine mastitis. J Appl Microbiol 121(1):101–114

    CAS  PubMed  Google Scholar 

  • Cho B-W, Cha C-N, Lee S-M et al (2015) Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli. Korean J Vet Res 55(4):253–257

    Google Scholar 

  • Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol Sin 29(9):1109–1118

    CAS  PubMed  Google Scholar 

  • Cooper S, Huntley SJ, Crump R et al (2016) A cross-sectional study of 329 farms in England to identify risk factors for ovine clinical mastitis. Prev Vet Med 125:89–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortopassi-Laurino M, Imperatriz-Fonseca VL, Roubik DW et al (2006) Global meliponiculture: challenges and opportunities. Apidologie 37:275–292

    Google Scholar 

  • Crispie F, Alonso-Gomez M, O'Loughlin C et al (2008) Intramammary infusion of a live culture for treatment of bovine mastitis: effect of live lactococci on the mammary immune response. J Dairy Res 75(3):374–384

    CAS  PubMed  Google Scholar 

  • Ebert F, Staufenbiel R, Simons J et al (2017) Randomized, blinded, controlled clinical trial shows no benefit of homeopathic mastitis treatment in dairy cows. J Dairy Sci 100(6):4857–4867

    CAS  PubMed  Google Scholar 

  • Espeche MC, Pellegrino M, Frola I et al (2012) Lactic acid bacteria from raw milk as potentially beneficial strains to prevent bovine mastitis. Anaerobe 18(1):103–109

    CAS  PubMed  Google Scholar 

  • Fan J, Zeng Z, Mai K et al (2016) Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with Trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1. Vet Microbiol 191:65–71

    CAS  PubMed  Google Scholar 

  • Fernandez L, Delgado S, Herrero H et al (2008) The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation. J Hum Lact 24(3):311–316

    PubMed  Google Scholar 

  • Fernandez L, Langa S, Martin V et al (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69(1):1–10

    CAS  PubMed  Google Scholar 

  • Fernandez L, Cardenas N, Arroyo R et al (2016) Prevention of infectious mastitis by oral administration of Lactobacillus salivarius PS2 during late pregnancy. Clin Infect Dis 62(5):568–573

    CAS  PubMed  Google Scholar 

  • Francoz D, Wellemans V, Dupre JP et al (2017) Invited review: a systematic review and qualitative analysis of treatments other than conventional antimicrobials for clinical mastitis in dairy cows. J Dairy Sci 100(10):7751–7770

    CAS  PubMed  Google Scholar 

  • Frola ID, Pellegrino MS, Espeche MC et al (2012) Effects of intramammary inoculation of Lactobacillus perolens CRL1724 in lactating cows’ udders. J Dairy Res 79(1):84–92

    CAS  PubMed  Google Scholar 

  • Frola ID, Pellegrino MS, Magnano G et al (2013) Histological examination of non-lactating bovine udders inoculated with Lactobacillus perolens CRL 1724. J Dairy Res 80(1):28–35

    CAS  PubMed  Google Scholar 

  • Ganda EK, Bisinotto RS, Vasquez AK et al (2016) Effects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts. J Dairy Sci 99(9):7319–7329

    CAS  PubMed  Google Scholar 

  • Gomes F, Henriques M (2016) Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol 72(4):377–382

    CAS  PubMed  Google Scholar 

  • Gomes F, Saavedra MJ, Henriques M (2016) Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. Pathog Dis 74(3):ftw006

    PubMed  Google Scholar 

  • Gomez-Gallego C, Garcia-Mantrana I, Salminen S et al (2016) The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med 21(6):400–405

    PubMed  Google Scholar 

  • Gougoulis DA, Kyriazakis I, Tzora A et al (2008) Effects of lamb sucking on the bacterial flora of teat duct and mammary gland of ewes. Reprod Domest Anim 43(1):22–26

    CAS  PubMed  Google Scholar 

  • Grzesiak B, Kolodziej B, Glowacka A et al (2018a) The effect of some natural essential oils against bovine mastitis caused by Prototheca zopfii isolates in vitro. Mycopathologia 183(3):541–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grzesiak B, Krukowski H, Glowacka A (2018b) The in vitro efficacy of SunSmile® Fruit & Vegetable Rinse against pathogenic strains of Prototheca algae that cause mastitis in cows. J Mycol Med 28(2):300–304

    CAS  PubMed  Google Scholar 

  • Guan R, Wu JQ, Xu W et al (2017) Efficacy of vaccination and nisin Z treatments to eliminate intramammary Staphylococcus aureus infection in lactating cows. J Zhejiang Univ Sci B 18(4):360–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton C, Emanuelson U, Forslund K et al (2006) Mastitis and related management factors in certified organic dairy herds in Sweden. Acta Vet Scand 48:11

    PubMed  PubMed Central  Google Scholar 

  • Hektoen L (2004) Investigations of the motivation underlying Norwegian dairy farmers’ use of homoeopathy. Vet Rec 155(22):701–707

    CAS  PubMed  Google Scholar 

  • Hektoen L, Larsen S, Odegaard SA et al (2004) Comparison of homeopathy, placebo and antibiotic treatment of clinical mastitis in dairy cows – methodological issues and results from a randomized-clinical trial. J Vet Med A Physiol Pathol Clin Med 51(9–10):439–446

    CAS  PubMed  Google Scholar 

  • Holmes MA, Zadoks RN (2011) Methicillin resistant S. aureus in human and bovine mastitis. J Mammary Gland Biol Neoplasia 16(4):373–382

    PubMed  Google Scholar 

  • Honorato LA, Machado Filho LC, Barbosa Silveira ID et al (2014) Strategies used by dairy family farmers in the south of Brazil to comply with organic regulations. J Dairy Sci 97(3):1319–1327

    CAS  PubMed  Google Scholar 

  • Hu S, Concha C, Johannisson A et al (2001) Effect of subcutaneous injection of ginseng on cows with subclinical Staphylococcus aureus mastitis. J Vet Med B Infect Dis Vet Public Health 48(7):519–528

    PubMed  Google Scholar 

  • Jamali H, Barkema HW, Jacques M et al (2018) Invited review: incidence, risk factors, and effects of clinical mastitis recurrence in dairy cows. J Dairy Sci 101(6):4729–4746

    CAS  PubMed  Google Scholar 

  • Kaithwas G, Mukerjee A, Kumar P et al (2011) Linum usitatissimum (linseed/flaxseed) fixed oil: antimicrobial activity and efficacy in bovine mastitis. Inflammopharmacology 19(1):45–52

    CAS  PubMed  Google Scholar 

  • Keller D, Sundrum A (2018) Comparative effectiveness of individualised homeopathy and antibiotics in the treatment of bovine clinical mastitis: randomised controlled trial. Vet Rec 182(14):407

    PubMed  PubMed Central  Google Scholar 

  • Kelly EJ, Wilson DJ (2016) Pseudomonas aeruginosa mastitis in two goats associated with an essential oil-based teat dip. J Vet Diagn Investig 28(6):760–762

    Google Scholar 

  • Kher MN, Sheth NR, Bhatt VD (2018) In vitro antibacterial evaluation of Terminalia chebula as an alternative of antibiotics against bovine subclinical mastitis. Anim Biotechnol:1–8. https://doi.org/10.1080/10495398.2018.1451752

    PubMed  Google Scholar 

  • Kitazaki K, Koga S, Nagatoshi K et al (2017) In vitro synergistic activities of cefazolin and nisin A against mastitis pathogens. J Vet Med Sci 79(9):1472–1479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klocke P, Ivemeyer S, Butler G et al (2010) A randomized controlled trial to compare the use of homeopathy and internal teat sealers for the prevention of mastitis in organically farmed dairy cows during the dry period and 100 days post-calving. Homeopathy 99(2):90–98

    CAS  PubMed  Google Scholar 

  • Klostermann K, Crispie F, Flynn J et al (2008) Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: comparison with antibiotic treatment in field trials. J Dairy Res 75(3):365–373

    CAS  PubMed  Google Scholar 

  • Kromker V, Leimbach S (2017) Mastitis treatment-reduction in antibiotic usage in dairy cows. Reprod Domest Anim 52(Suppl 3):21–29

    PubMed  Google Scholar 

  • Kumar R, Bharati KA (2013) New claims in folk veterinary medicines from Uttar Pradesh, India. J Ethnopharmacol 146(2):581–593

    PubMed  Google Scholar 

  • Kumar H, du Toit E, Kulkarni A et al (2016) Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front Microbiol 7:1619

    PubMed  PubMed Central  Google Scholar 

  • Lainesse C, Gehring R, Pasloske K et al (2012) Challenges associated with the demonstration of bioequivalence of intramammary products in ruminants. J Vet Pharmacol Ther 35(Suppl 1):65–79

    PubMed  Google Scholar 

  • Lange-Consiglio A, Spelta C, Garlappi R et al (2014) Intramammary administration of platelet concentrate as an unconventional therapy in bovine mastitis: first clinical application. J Dairy Sci 97(10):6223–6230

    CAS  PubMed  Google Scholar 

  • Lans C, Turner N, Khan T et al (2007) Ethnoveterinary medicines used for ruminants in British Columbia, Canada. J Ethnobiol Ethnomed 3:11

    PubMed  PubMed Central  Google Scholar 

  • Le KY, Otto M (2015) Quorum-sensing regulation in staphylococci – an overview. Front Microbiol 6:1174

    PubMed  PubMed Central  Google Scholar 

  • Li X, Lin J, Han W et al (2012) Antioxidant ability and mechanism of rhizoma Atractylodes macrocephala. Molecules 17(11):13457–13472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loken T (2001) Alternative therapy of animals-homeopathy and other alternative methods of therapy. Acta Vet Scand Suppl 95:47–50

    CAS  PubMed  Google Scholar 

  • Lu Y, Hu YL, Kong XF et al (2008) Selection of component drug in activating blood flow and removing blood stasis of Chinese herbal medicinal formula for dairy cow mastitis by hemorheological method. J Ethnopharmacol 116(2):313–317

    CAS  PubMed  Google Scholar 

  • Mandal MD, Mandal S (2011) Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 1(2):154–160

    PubMed  PubMed Central  Google Scholar 

  • Mason SE, Mullen KAE, Anderson KL et al (2017) Pharmacokinetic analysis of thymol, carvacrol and diallyl disulfide after intramammary and topical applications in healthy organic dairy cattle. Food Addit Contam Part A 34(5):740–749

    CAS  Google Scholar 

  • Mathie RT, Clausen J (2014) Veterinary homeopathy: systematic review of medical conditions studied by randomised placebo-controlled trials. Vet Rec 175(15):373–381

    PubMed  Google Scholar 

  • Mavrogianni VS, Cripps PJ, Fthenakis GC (2007) Bacterial flora and risk of infection of the ovine teat duct and mammary gland throughout lactation. Prev Vet Med 79(2–4):163–173

    CAS  PubMed  Google Scholar 

  • McPhee CS, Anderson KL, Yeatts JL et al (2011) Milk and plasma disposition of thymol following intramammary administration of a phytoceutical mastitis treatment. J Dairy Sci 94(4):1738–1743

    CAS  PubMed  Google Scholar 

  • Mignacca SA, Dore S, Spuria L et al (2017) Intramammary infusion of a live culture of Lactococcus lactis in ewes to treat staphylococcal mastitis. J Med Microbiol 66(12):1798–1810

    PubMed  Google Scholar 

  • Mukherjee R, De UK, Ram GC (2010) Evaluation of mammary gland immunity and therapeutic potential of Tinospora cordifolia against bovine subclinical mastitis. Trop Anim Health Prod 42(4):645–651

    PubMed  Google Scholar 

  • Mullen KA, Anderson KL, Washburn SP (2014) Effect of 2 herbal intramammary products on milk quantity and quality compared with conventional and no dry cow therapy. J Dairy Sci 97(6):3509–3522

    CAS  PubMed  Google Scholar 

  • Mullen KA, Beasley E, Rizzo JQ et al (2017) Potential of phytoceuticals to affect antibiotic residue detection tests in cow milk in a randomised trial. Vet Rec Open 4(1):e000214

    PubMed  PubMed Central  Google Scholar 

  • Mushtaq S, Shah AM, Shah A et al (2018) Bovine mastitis: an appraisal of its alternative herbal cure. Microb Pathog 114:357–361

    PubMed  Google Scholar 

  • Nobrega DB, De Buck J, Barkema HW (2018a) Antimicrobial resistance in non-aureus staphylococci isolated from milk is associated with systemic but not intramammary administration of antimicrobials in dairy cattle. J Dairy Sci 101:7425–7436

    CAS  PubMed  Google Scholar 

  • Nobrega DB, Naushad S, Naqvi SA et al (2018b) Prevalence and genetic basis of antimicrobial resistance in non-aureus staphylococci isolated from Canadian dairy herds. Front Microbiol 9:256

    PubMed  PubMed Central  Google Scholar 

  • Olson ME, Ceri H, Morck DW et al (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66(2):86–92

    PubMed  PubMed Central  Google Scholar 

  • Persson Waller K, Hallen Sandgren C, Emanuelson U et al (2007) Supplementation of RRR-alpha-tocopheryl acetate to periparturient dairy cows in commercial herds with high mastitis incidence. J Dairy Sci 90(8):3640–3646

    CAS  PubMed  Google Scholar 

  • Pinedo P, Karreman H, Bothe H et al (2013) Efficacy of a botanical preparation for the intramammary treatment of clinical mastitis on an organic dairy farm. Can Vet J 54(5):479–484

    PubMed  PubMed Central  Google Scholar 

  • Rainard P (2017) Mammary microbiota of dairy ruminants: fact or fiction? Vet Res 48(1):25

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro ES, Gomes G, Greco LF et al (2016) Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. J Dairy Sci 99(3):2201–2220

    CAS  PubMed  Google Scholar 

  • Ruegg PL (2009) Management of mastitis on organic and conventional dairy farms. J Anim Sci 87(13 Suppl):43–55

    CAS  PubMed  Google Scholar 

  • Saini V, McClure JT, Scholl DT et al (2013) Herd-level relationship between antimicrobial use and presence or absence of antimicrobial resistance in gram-negative bovine mastitis pathogens on Canadian dairy farms. J Dairy Sci 96(8):4965–4976

    CAS  PubMed  Google Scholar 

  • Silvestrini P, Beccaria C, Pereyra EAL et al (2017) Intramammary inoculation of Panax ginseng plays an immunoprotective role in Staphylococcus aureus infection in a murine model. Res Vet Sci 115:211–220

    CAS  PubMed  Google Scholar 

  • Spelman K, Duke JA, Bogenschutz-Godwin MJ (2006) The synergy principle at work with plants, pathogens, insects, herbivores, and humans. In: Cseke LJ, Kirakosyan A, Kaufman PB et al (eds) Natural products from plants. CRC, Boca Raton, FL, pp 475–501

    Google Scholar 

  • Spinella M (2002) The importance of pharmacological synergy in psychoactive herbal medicines. Altern Med Rev 7(2):130–137

    PubMed  Google Scholar 

  • Stagos D, Soulitsiotis N, Tsadila C et al (2018) Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. Int J Mol Med 42(2):726–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens M, Piepers S, De Vliegher S (2016) Mastitis prevention and control practices and mastitis treatment strategies associated with the consumption of (critically important) antimicrobials on dairy herds in Flanders, Belgium. J Dairy Sci 99(4):2896–2903

    CAS  PubMed  Google Scholar 

  • Szweda P, Schielmann M, Frankowska A et al (2014) Antibiotic resistance in Staphylococcus aureus strains isolated from cows with mastitis in eastern Poland and analysis of susceptibility of resistant strains to alternative nonantibiotic agents: lysostaphin, nisin and polymyxin B. J Vet Med Sci 76(3):355–362

    CAS  PubMed  Google Scholar 

  • Tavakol M, Riekerink RG, Sampimon OC et al (2012) Bovine-associated MRSA ST398 in the Netherlands. Acta Vet Scand 54:28

    PubMed  PubMed Central  Google Scholar 

  • Uncini Manganelli RE, Camangi F, Tomei PE (2001) Curing animals with plants: traditional usage in Tuscany (Italy). J Ethnopharmacol 78(2–3):171–191

    CAS  PubMed  Google Scholar 

  • Upadhyay B, Singh KP, Kumar A (2011) Ethno-veterinary uses and informants consensus factor of medicinal plants of Sariska region, Rajasthan, India. J Ethnopharmacol 133(1):14–25

    PubMed  Google Scholar 

  • Wang X, Feng S, Ding N et al (2018) Anti-inflammatory effects of berberine hydrochloride in an LPS-induced murine model of mastitis. Evid Based Complement Alternat Med 2018:5164314

    PubMed  PubMed Central  Google Scholar 

  • Wu J, Hu S, Cao L (2007) Therapeutic effect of nisin Z on subclinical mastitis in lactating cows. Antimicrob Agents Chemother 51(9):3131–3135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Guan R, Lu Y et al (2015) Therapeutic effect of polysaccharide fraction of Atractylodis macrocephalae Koidz in bovine subclinical mastitis. BMC Vet Res 11:165

    PubMed  PubMed Central  Google Scholar 

  • Yang L, Liu Y, Wu H et al (2012) Combating biofilms. FEMS Immunol Med Microbiol 65(2):146–157

    CAS  PubMed  Google Scholar 

  • Yu J, Ren Y, Xi X et al (2017) A novel lactobacilli-based teat disinfectant for improving bacterial communities in the milks of cow teats with subclinical mastitis. Front Microbiol 8:1782

    PubMed  PubMed Central  Google Scholar 

  • Zhen YH, Jin LJ, Li XY et al (2009) Efficacy of specific egg yolk immunoglobulin (IgY) to bovine mastitis caused by Staphylococcus aureus. Vet Microbiol 133(4):317–322

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Coppock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coppock, R.W. (2019). Nutraceuticals in Mastitis. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_38

Download citation

Publish with us

Policies and ethics