Skip to main content

Nutraceuticals for Diabetes in Dogs and Cats

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine
  • 2902 Accesses

Abstract

Diabetes is a serious health issue in dogs and cats that is usually treated through the use of injectable insulin. There are more than 90 million pet dogs in the United States, and 1 in every 400–500 dogs suffers from diabetes. Diabetes typically occurs later in life, usually around 7–10 years of age, with certain breeds being at a higher risk of developing this disease. Traditional diabetic management in dogs and cats includes food monitoring, glucose monitoring (which is done with the use of a canine-specific glucometer), moderate exercise, medication, and insulin therapy. Often times, dog and cat owners decline diabetic treatment because they either do not feel confident in giving insulin injections or because they simply cannot afford treatment, as traditional insulin therapy and medication are expensive. Therefore, it is beneficial to determine the efficacy and safety of a potential oral formulation for diabetic management. An oral formulation of nutraceutical(s) may provide an easier administration (noninvasive) method and provide lower costs to dog and cat owners by not requiring additional supplies such as needles and syringes. This chapter describes various plant extracts and nutraceuticals that have potential for anti-diabetic and antihyperglycemic effects in diabetic dogs and cats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Salem OM, Harisa GI, Ali TM (2014) Curcumin ameliorates streptozotocin-induced heart injury in rats. J Biochem Mol Toxicol 28:263–270

    CAS  PubMed  Google Scholar 

  • Abou Khalil NS, Abou-Elhamd Alaa S, Wasfy Salwa IA et al (2016) Antidiabetic and antioxidant impacts of desert date (Balanites aegyptiaca) and parsley (Petroselinum sativum) aqueous extracts: lessons from experimental rats. J Diab Res 2016:ID 8408326

    Google Scholar 

  • Accurso A, Bernstein RK, Dahlqvist A et al (2008) Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutr Metab 5(1):9

    Google Scholar 

  • Agarwal SP, Khanna R, Karmarkar R et al (2007) Shilajit: a review. Phytother Res 21:401–405

    PubMed  Google Scholar 

  • Ahmad U, Ahmad RS (2018) Anti-diabetic property of aqueous extract of Stevia rebaudiana leaves in streptozotocin-induced diabetes in albino rats. BMC Complement Altern Med 18:179

    PubMed  PubMed Central  Google Scholar 

  • Ahmed I, Adehgate E, Cummings E et al (2004) Beneficial effects and mechanisms of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol Cell Biochem 261:63–70

    CAS  PubMed  Google Scholar 

  • Ahmed OM, Abdel-Moneim A, Abulyazid I et al (2010) Antihyperglycemic, anti-hyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens and rutin in nicotinamide/streptozotocin diabetic albino rats. Diabetol Croat 39:15–32

    CAS  Google Scholar 

  • Al-Malki AL, El Rabey HA (2015) The antidiabetic effect of low doses of Moringa oleifera Lam. Seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. BioMed Res Int. https://doi.org/10.1155/2015/381040

    Google Scholar 

  • Anand P, Murali KY, Tandon V et al (2010) Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase and GLUT4 translocation in experimental diabetic rats. Chem Biol Interact 186:72–81

    CAS  PubMed  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA et al (2013) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    Google Scholar 

  • Antia BS, Okokon JE, Okon PA (2005) Hypoglycemic effect of aqueous leaf extract of Persea americana Mill on alloxan-induced diabetic rats. Indian J Pharmacol 37:325–326

    Google Scholar 

  • Antony B, Marina B, Iyer VS et al (2008) A pilot cross-over study to evaluate human oral bioavailability of BCM-95CG (Biocurcumax), a novel bioenhanced preparation of curcumin. Indian J Pharm Sci 70(4):445–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anudeep S, Prasana VK, Adya SM et al (2016) Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects. Int J Biol Macromol 91:656–662

    CAS  PubMed  Google Scholar 

  • Aparna A, Rege A, Chowdhary AS (2014) Evaluation of alpha-amylase and alpha-glucosidase inhibitory activity of Shilajit. Int J Adv Res 2:735–740

    Google Scholar 

  • Araki E, Miyazaki J (2007) Metabolic disorders in diabetes mellitus: impact of mitochondrial function and oxidative stress on diabetes and its complications. Antioxid Redox Signal 9(3):289–291

    CAS  PubMed  Google Scholar 

  • Arora DS, Onsare JG, Kaur H (2013) Bioprospecting of Moringa (Moringaceae): microbiological perspective. J Pharmacogn Phytochem 1(6):193–215

    Google Scholar 

  • Asare GA, Gyan B, Bugyei K et al (2012) Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. J Ethnopharmacol 139:265–272

    PubMed  Google Scholar 

  • Awodele O, Oreagba IA, Odoma S et al (2012) Toxicological evaluation of the aqueous leaf extract of Moringa oleifera Lam. (Moringaceae). J Ethnopharmacol 139:330–336

    PubMed  Google Scholar 

  • Babu V, Gangadevi T, Subramonium A (2002) Anti-hyperglycemic activity of cassia kleinii leaf extract in glucose fed normal rats and alloxan-induced diabetic rats. Indian J Pharmacol 34:409–415

    Google Scholar 

  • Babu V, Gangadevi T, Subramonium A (2003a) Anti-hyperglycemic activity of Cassia kleinii leaf extract in glucose fed normal and alloxan-induced diabetic rats. Indian J Pharmacol 34:409–415

    Google Scholar 

  • Babu V, Gangadevi T, Subramonium A (2003b) Antidiabetic activity of ethanol extract of Cassia kleinii leaf in streptozotocin-induced diabetic rats and isolation of an active fraction and toxicity evaluation of the extract. Indian J Pharmacol 35(5):290–296

    Google Scholar 

  • Balamurugan AN, Miyamoto M, Wang W et al (2003) Streptozotocin (STZ) used to induce diabetes in animal models. J Ethnopharmacol 26:102–103

    CAS  Google Scholar 

  • Bao X, Shen L, Qian C et al (2016) Anti-diabetic activities of catalpol in db/db mice. Korean J Physiol Pharmacol 20(2):153–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt JK, Thomas S, Nanjan MJ (2012) Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res 32:534–541

    Google Scholar 

  • Bhattacharya SK (1995) Shilajit attenuates streptozotocin induced diabetes mellitus and decreases pancreatic islet superoxide dismutase activity in rats. Phytother Res 9:41–44

    Google Scholar 

  • Bhavsar SK, Thaker AM, Malik JK (2016) Shilajit. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic/Elsevier, Amsterdam, pp 707–716

    Google Scholar 

  • Bhowmik A, Khan LA, Akhter M et al (2009) Studies on the antidiabetic effects of Mangifera indica stem-barks and leaves on nondiabetic, type 1 and type 2 diabetic model rats. Bangladesh J Pharmacol 4:110–114

    Google Scholar 

  • Biswas TK, Polley G, Pandit S et al (2010) Effects of adjunct therapy of proprietary herbo-chromium supplement in type 2 diabetes: a randomized clinical trial. Int J Diab Develop Countr 30:153–161

    Google Scholar 

  • Brouns F (2018) Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable? Eur J Nutr 57:1301–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Can A, Akev N, Ozsoy N et al (2004) Effect of Aloe vera leaf gel and pulp extracts on the liver in type-II diabetic rat models. Biol Pharm Bull 27:694–698

    CAS  PubMed  Google Scholar 

  • Castro CN, Barcala Tabarrozzi AE, Winnewisser J et al (2014) Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes. Clin Exp Immunol 177:149–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celano R, Piccinelli AL, Pugliese A et al (2018) Insights into the analysis of phenolic secoiridoids in extra virgin olive oil. J Agric Food Chem 66:6053–6063

    CAS  PubMed  Google Scholar 

  • Chan N, Li S, Perez E (2016) Interactions between Chinese nutraceuticals and Western medicines. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic/Elsevier, Amsterdam, pp 875–882

    Google Scholar 

  • Chen QM, Xie MZ (1986) Studies on the hypoglycemic effect of Coptis chinensis and berberine. Acta Pharm Sin 21:401–406

    CAS  Google Scholar 

  • Chen TH, Chen SC, Chan P et al (2005) Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Plant Med 71:108–113

    CAS  Google Scholar 

  • Cheng JT, Liu IM, Tzeng TF et al (2002) Plasma glucose-lowering effect of beta-endorphin in streptozotocin-induced diabetic rats. Horm Metab Res 34:570–576

    CAS  PubMed  Google Scholar 

  • Cho WC, Chung WS, Lee SK et al (2006) Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol 550(1–3):173–179

    CAS  PubMed  Google Scholar 

  • Chothani DL, Vaghasiya HU (2011) A review on Balanites aegyptiaca Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity. Pharmacogn Rev 5(9):55–62

    PubMed  PubMed Central  Google Scholar 

  • Chusak C, Thilavech T, Henry CJ et al (2018) Acute effect of Clitoria ternatea flower beverage on glycemic response and antioxidant capacity in healthy subjects: a randomized crossover trial. BMC Complement Altern Med 18:6

    PubMed  PubMed Central  Google Scholar 

  • Corradini S, Pilosio B, Dondi F et al (2016) Accuracy of a flash glucose monitoring system in diabetic dogs. J Vet Int Med 30(4):983–988

    CAS  Google Scholar 

  • Cova D, De Angelis L, Giavarini F et al (1992) Pharmacokinetics and metabolism of oral diosmin in healthy volunteers. Int J Clin Pharmacol Ther Toxicol 30:29–33

    CAS  PubMed  Google Scholar 

  • Cuomo J, Appendino G, Dern AS et al (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod 74(4):664–669

    CAS  PubMed  Google Scholar 

  • Curry DL, Bennett LL, Li CH (1987) Stimulation of insulin secretion by beta-endorphins (1-27 and 1-31). Life Sci 40:2053–2058

    CAS  PubMed  Google Scholar 

  • DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diab Care 32(Suppl 2):S157–S163

    CAS  Google Scholar 

  • Delack JB, Stogdale L (1983) Glycosylated hemoglobin measurement in dogs and cats: implications for its utility in diabetic monitoring. Can Vet J 24:308–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Melo IS, dos Santos AF, Bueno NB (2018) Curcumin or combined curcuminoids are effective in lowering the fasting blood glucose concentrations of individuals with dysglycemia: systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 128:137–144

    PubMed  Google Scholar 

  • Deore SL, Khadabadi SS, Daulatkar VD et al (2008) Evaluation of hypoglycemic and antidiabetic activity of Butea monosperma. Pharmacogn Mag 4(13):134–138

    Google Scholar 

  • Devi VD, Urooj A (2008a) Hypoglycemic potential of Morus indica L and Costus igneus Nak: a preliminary study. Indian J Exp Biol 46:614–616

    PubMed  Google Scholar 

  • Devi VD, Urooj A (2008b) Nutrient profile and antioxidant components of Costus specious Sm. and Costus igneus Nak. Indian J Nat Prod 1:116–118

    Google Scholar 

  • Dhasarathan P, Theriappan P (2011) Evaluation of anti-diabetic activity of Strychnos potatorum in alloxan induced diabetic rats. J Med Sci 2(2):670–674

    Google Scholar 

  • Dheer R, Bhatnagar P (2010) A study of the antidiabetic activity of Barleria prionitis Linn. Indian J Pharmacol 42:70–73

    PubMed  PubMed Central  Google Scholar 

  • Divi SM, Bellamkonda R, Dasireddy SK (2012) Evaluation of antidiabetic and antihyperlipidemic potential of aqueous extract of Moringa oleifera in fructose feed insulin resistant and STZ induced diabetic Wistar rats: a comparative study. Asian J Pharm Clin Res 5(1):67–72

    Google Scholar 

  • Dong SF, Hong Y, Liu M et al (2011) Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats. Eur J Pharmacol 660:368–374

    CAS  PubMed  Google Scholar 

  • Dong H, Wang N, Zgao L, Lu F (2012) Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid Based Complement Altern Med 2012:591654

    Google Scholar 

  • Drummond E, Flynn S, Whelan H et al (2018) Casein hydrolysate with glycemic control properties: evidence from cells, animal models, and humans. J Agric Food Chem 66:4352–4363

    CAS  PubMed  Google Scholar 

  • Edoga CO, Njoku OO, Amadi EN et al (2013) Blood sugar lowering effect of Moringa oleifera Lam. in albino rats. Int J Sci Technol 3:88–90

    Google Scholar 

  • Elavarasi S, Saravanan K (2012) Ethnobotanical study of plants used to treat diabetes by tribal people of Kolli Hills, Namakkal District, Tamilnadu, Southern India. Int J Pharm Tech Res 4:404–411

    Google Scholar 

  • Etuk EU (2010) Animals models for studying diabetes mellitus. Agric Biol J North Am 1(2):130–134

    CAS  Google Scholar 

  • Etuk EU, Muhammed BJ (2010) Evidence based analysis of chemical method of induction of diabetes mellitus in experimental rats. Int J Pharm Sci 1(2):139–142

    CAS  Google Scholar 

  • Feinman RD, Pogozelski WK, Astrup A et al (2015) Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition 31(1):1–13

    CAS  PubMed  Google Scholar 

  • Fleck A, Gupta RC, Goad JT et al (2014) Anti-arthritic efficacy and safety of chrminex®3+ (trivalent chromium, Phyllanthus emblica extract, and shilajit) in moderately arthritic dogs. J Vet Sci Anim Husb 1(4):401

    Google Scholar 

  • Fujii A, Kobayashi S, Kuboyama N et al (1990) Augmentation of wound healing by Royal jelly (RJ) in streptozotocin-diabetic rats. Jpn J Pharmacol 53:331–337

    CAS  PubMed  Google Scholar 

  • Garg RC (2016) Fenugreek: multiple health benefits. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic/Elsevier, Amsterdam, pp 599–617

    Google Scholar 

  • Geetha G, Kalavalarasariel GP, Sankar V (2011) Anti-diabetic effect of Achyranthes rubrofusca leaf extracts on alloxan induced diabetic rats. Pak J Pharm Sci 24:193–199

    PubMed  Google Scholar 

  • Georgewill OA, Georgewill UO, Nwankwoala RNP (2010) Anti-inflammatory effects of Moringa oleifera Lam. extract in rats. Asian Pac J Trop Med 3(2):133–135

    Google Scholar 

  • Geuns JMC, Buyse J, Vankeirsbilck A et al (2007) Metabolism of stevioside by healthy subjects. Exp Biol Med 232:164–173

    CAS  Google Scholar 

  • Ginsberg BH (2009) Factors affecting blood glucose monitoring: sources of errors in measurement. J Diab Sci Technol 3(4):903–913

    Google Scholar 

  • Gopalakrishnan L, Doriya K, Kumar DS (2016) Moringa oleifera: a review on nutritive importance and its medicinal application. Food Sci Hum Welln 5:49–56

    Google Scholar 

  • Gregersen S, Jeppesen PB, Holst JJ et al (2004) Anti-hyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53:73–76

    CAS  PubMed  Google Scholar 

  • Gupta R, Mathur M, Bajaj VK et al (2012) Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J Diabetes 4(2):164–171

    PubMed  Google Scholar 

  • Gupta RC, Chang D, Nammi S et al (2017) Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr 9:59

    PubMed  PubMed Central  Google Scholar 

  • Gupta RC, Srivastava A, Lall R (2018) Toxicity potential of nutraceuticals. In: Nicolotti O (ed) Computational toxicology methods and protocols. Humana/Springer, New York, pp 367–394

    Google Scholar 

  • Haeri MR, Limaki HM, White CJB et al (2012) Non-insulin dependent anti-diabetic activity of (2S, 3R, 4S) 4-hydroxyisoleucine of fenugreek (Trigonella foenum graecum) in streptozotocin-induced type I diabetic rats. Phytomedicine 19:571–574

    CAS  PubMed  Google Scholar 

  • Hall K (2017) A review of the carbohydrate-insulin model of obesity. Eur J Clin Nutr 71(5):679. https://doi.org/10.1038/ejcn.2017.21

    Article  CAS  PubMed  Google Scholar 

  • Hariri M, Haghighatdoost F (2017) Effect of curcumin on anthropometric measures: a systematic review on randomized clinical trials. J Am Coll Nutr. https://doi.org/10.1080/07315724.2017.1392263

    CAS  PubMed  Google Scholar 

  • Hegde PK, Rao HA, Rao PN (2014) A review on insulin plant (Costus igneus Nak). Pharmacogn Rev 8(15):67–72

    PubMed  PubMed Central  Google Scholar 

  • Hikino H, Kobayashi M, Suzuki Y et al (1989) Mechanisms of hypoglycemic activity of aconitan A, a glycan from Aconitum carmichaelii roots. J Ethnopharmacol 27:295–304

    Google Scholar 

  • Hossain MS, Alam MB, Asadujjaman M et al (2011) Antihyperglycemic and anti-hyperlipidemic effects of different fractions of Stevia rebaudiana leaves in alloxan induced diabetic rats. IJPSR 2:1722–1729

    Google Scholar 

  • Hsu CH, Cheng AL (2007) Clinical studies with curcumin. Adv Exp Med Biol 595:471–480

    PubMed  Google Scholar 

  • Hsu CC, Lin MH, Cheng JT et al (2017) Antihyperglycemic action of diosmin, a citrus flavonoid, is induced through endogenous β-endorphin in type I-like diabetes rats. Clin Exp Pharmacol Physiol 44(5):549–555

    CAS  PubMed  Google Scholar 

  • Hua Y, Clark S, Ren J et al (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23:313–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Deng S, Han Q et al (2016) Hypoglycemic activity and the potential mechanism of the flavonoid rich extract from Sophora tonkinensis Gagnep in KK-Ay mice. Front Pharmacol 7:288

    PubMed  PubMed Central  Google Scholar 

  • Imenshahidi M, Hosseinzadeh H (2015) Berberis vulgaris and berberine: an update review. Phytother Res 30:1745–1764

    Google Scholar 

  • Irondi EA, Oboh G, Akindahunsi AA (2016) Antidiabetic effects of Mangifera indica kernel flour-supplemented diet in streptozotocin-induced type 2 diabetes in rats. J Food Sci Nutr 4(6):828–839

    CAS  Google Scholar 

  • Iwai K, Kim MY, Onodera A et al (2006) Alpha-glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb. J Agric Food Chem 54:4588–4592

    CAS  PubMed  Google Scholar 

  • Jager R, Lowery RP, Calvanese AV et al (2014) Comparative absorption of curcumin formulations. Nutr J 13:1

    Google Scholar 

  • Jain PG, Patil SD, Haswani NG et al (2010) Hypolipidemic activity of Moringa oleifera Lam., Moringaceae, on high fat diet induced hyperlipidemia in albino rats. Rev Bras Farmacogn 20:969–973

    Google Scholar 

  • Jain D, Bansal MK, Dalvi R et al (2014) Protective effect of diosmin against diabetic neuropathy in experimental rats. J Integr Med 12:35–41

    PubMed  Google Scholar 

  • Jaiswal D, Rai PS, Kumar A et al (2009) Effect of Moringa oleifera Lam. Leaves aqueous extract therapy on hypoglycemic rats. J Ethnopharmacol 123:392–396

    PubMed  Google Scholar 

  • Javeri I, Chand N (2016) Curcumin. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic/Elsevier, Amsterdam, pp 435–445

    Google Scholar 

  • Jayaprasad B, Sharavanan PS, Sivaraj R (2015) Effect of Chloroxylon swietenia Dc bark extracts on STZ induced diabetic rats with special attention to its glycoprotein levels. Der Pharmac Lett 7(12):414–418

    CAS  Google Scholar 

  • Jayasri MA, Gunasekaran S, Radha A et al (2008) Antidiabetic effect of Costus pictus leaves in normal and streptozotocin-induced diabetic rats. Int J Diabetes Metab 16:117–122

    Google Scholar 

  • Jeppesen PB, Gregersen S, Rolfsen SE et al (2003) Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism 52:372–378

    CAS  PubMed  Google Scholar 

  • Jiménez-Flores LM, López-Briones S, Macías-Cervantes MH et al (2014) A PPARγ, NF-κB, and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules 19:8289–8302

    PubMed  PubMed Central  Google Scholar 

  • Joseph B, Jini D (2013) Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis 3(2):93–102

    PubMed Central  Google Scholar 

  • Kaneto H, Katakami N, Kawamori D et al (2007) Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Sign 9(3):355–366

    CAS  Google Scholar 

  • Kang S, Tsai LT, Rosen ED et al (2016) Nuclear mechanisms of insulin resistance. Trends Cell Biol 26(5):341–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kangralkar V, Shivraj A, Patil D (2010) Oxidative stress and diabetes: a review. Int J Pharm Appl 1:38–45

    CAS  Google Scholar 

  • Kanikkannan N, Ramarao P, Ghosal S (1994) Shilajit-induced potentiation of the hypoglycemic action of insulin and inhibition of streptozotocin induced diabetes in rats. Phytother Res 9:478–481

    Google Scholar 

  • Kaur G, Kamboj P, Kalia AN et al (2011) Antidiabetic and anti-hypercholesterolemic effects of aerial parts of Sida cordifolia Linn on streptozotocin-induced diabetic rats. Indian J Nat Prod Resour 2:428–434

    Google Scholar 

  • Khan W, Parveen R, Chester K et al (2017) Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and in vivo GC-MS metabolomics. Front Pharmacol 8:577

    PubMed  PubMed Central  Google Scholar 

  • Kim JA, Wei Y, Sowers JR et al (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102(4):401–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Shin BC, Lee MS et al (2011) Red ginseng for type 2 diabetes mellitus: a systematic review of randomized controlled trials. Chin J Integr Med 17:937–944

    PubMed  Google Scholar 

  • King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166:877–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong WJ, Zhang H, Song DQ et al (2009) Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism 58:109–119

    CAS  PubMed  Google Scholar 

  • Kouzuma T, Usami T, Yamakoshi M et al (2002) An enzymatic method for the measurement of glycated albumin in biological samples. Clin Chim Acta 324:61–71

    CAS  PubMed  Google Scholar 

  • Kumar A, Chopra EK, Mukherjee M et al (2015) Current knowledge and pharmacological profile of berberine: an update. Eur J Pharmacol 761:288–297

    CAS  PubMed  Google Scholar 

  • Kumar Gupta S, Kumar B, Srinivasan BP et al (2013) Retinoprotective effects of Moringa oleifera via antioxidant, anti-inflammatory, and anti-angiogenic mechanisms in streptozotocin-induced diabetic rats. J Ocul Pharmacol Ther 29:419–426

    CAS  PubMed  Google Scholar 

  • Lai DM, Tu YK, Liu IM et al (2006) Mediation of beta-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med 72:9–13

    CAS  PubMed  Google Scholar 

  • Lailerd N, Saengsirisuwan V, Slonigar JA (2004) Effect of stevioside on glucose transport activity in rat muscle. Metabolism 53:101–107

    CAS  PubMed  Google Scholar 

  • Lama A, Pirozzi C, Mollica MP et al (2017) Polyphenol-rich virgin olive oil reduces insulin resistance and liver inflammation and improves mitochondrial dysfunction in high-fat diet fed rats. Mol Nutr Food Res 61(3)

    Google Scholar 

  • Lan J, Zhao Y, Dong F et al (2015) Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipidemia and hypertension. J Ethnopharmacol 161:69–81

    CAS  PubMed  Google Scholar 

  • Lawley S, Gupta RC, Goad JT et al (2013) Anti-inflammatory and anti-arthritic efficacy and safety of purified shilajit in moderately arthritic dogs. J Vet Sci Anim Husb 1(3):302

    Google Scholar 

  • Lee CY (2016) Glucagon-like peptide-1 formulation—the present and future development in diabetic treatment. Basic Clin Pharmacol Toxicol 118:173–180

    CAS  PubMed  Google Scholar 

  • Lee WK, Kao ST, Liu IM et al (2006) Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats. Clin Exp Pharmacol Physiol 33(1–2):27–32

    CAS  PubMed  Google Scholar 

  • Lee WK, Kao ST, Liu IM et al (2007) Ginsenoside Rh2 is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats. Horm Met Res 39:347–354

    CAS  Google Scholar 

  • Lemus-Mondaca R, Vega-Galvez A, Zura-Bravo L et al (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. J Food Chem 132:1121–1132

    CAS  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetology 51:216–226

    CAS  Google Scholar 

  • Li X-Y (2007) Efficacy and safety of berberine in the treatment of diabetes with dyslipidemia. US ClinicalTrials.gov

    Google Scholar 

  • Liu IM, Cheng JT (2011) Mediation of endogenous beta-endorphin in the plasma glucose-lowering actin of herbal products observed in type 1-like diabetic rats. Evid Based Complement Alternat Med 2011:987876

    CAS  PubMed  Google Scholar 

  • Liu A, Lou H, Zhao L et al (2006) Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rats plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal 40(3):720–727

    CAS  PubMed  Google Scholar 

  • Liu Q, Li W, Nagata K et al (2018) Isolation, structural elucidation, and liquid chromatography-mass spectrometry analysis of steroidal glycosides from Polygonatum odoratum. J Agric Food Chem 66(2):521–531

    CAS  PubMed  Google Scholar 

  • Ma X, Yang W, Laaksonen O et al (2017) Role of flavonols and proanthocyanidins in the sensory quality of Sea buckthorn (Hippophae rhamnoides L.) berries. J Agric Food Chem 65:9871–9879

    CAS  PubMed  Google Scholar 

  • Mahomed IM, Ojewole JA (2003) Hypoglycemic effect of Hypoxis hemerocallidea corm (African potato) aqueous extract in rats. Methods Find 25(8):617

    CAS  Google Scholar 

  • Manolova Y, Deneva V, Antonov L et al (2014) The effect of the water on the curcumin tautomerism: a quantitative approach. Spectroch Acta Part A Mol Biomol Spectrosc 132:815–820

    CAS  Google Scholar 

  • Matsuzawa-Nagata N, Takamura T, Ando H et al (2008) Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 57(8):1071–1077

    CAS  PubMed  Google Scholar 

  • Menchetti L, Canali C, Castellini C et al (2018) The different effects of linseed and fish oil supplemented diets on insulin sensitivity of rabbit does during pregnancy. Res Vet Sci 118:126–133

    CAS  PubMed  Google Scholar 

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    PubMed  Google Scholar 

  • Metzler M, Pfeiffer E, Schulz SI et al (2013) Curcumin uptake and metabolism. BioFactors (Oxford, England) 39(1):14–20

    CAS  Google Scholar 

  • Mishra Y, Khan MSY, Zafar R et al (1990) Hypoglycemic activity of leaves of Lagerstroemia speciosa (L) Pers. Indian J Pharmacol 22:174–176

    Google Scholar 

  • Miura T, Itoh Y, Iwamoto N et al (2004) Suppressive activity of the fruit of Momordica charantia with exercise on blood glucose in type 2 diabetes mice. Biol Pharm Bull 27:248–250

    CAS  PubMed  Google Scholar 

  • Muhammad DRA, Dewettinck K (2017) Cinnamon and its derivatives as potential ingredient in functional food—a review. Int J Food Prop 20(D2):S2237–S2263

    Google Scholar 

  • Nagalievska M, Sabadashka M, Hachkova H et al (2018) Galega officinalis extract regulate the diabetes mellitus related violations of proliferation, functions and apoptosis of leukocytes. BMC Complement Altern Med 18:4

    PubMed  PubMed Central  Google Scholar 

  • Nair SS, Kavrekar V, Mishra A (2013) Evaluation of in vitro anti-diabetic activity of selected plant extracts. Int J Pharm Sci Invent 2:12–19

    Google Scholar 

  • Natural Medicines Comprehensive Database (2014) Ginseng. Panax. Retrieved January 25, 2015 from http://www.nlm.nih.gov/medilineplus/druginfo/natural/1000.html

  • Naveen J, Baskaran V (2018) Antidiabetic plant-derived nutraceuticals: a critical review. Eur J Nutr 57:1275–1299

    CAS  PubMed  Google Scholar 

  • Nelson KM, Dahlin JL, Bisson J et al (2017) The essential medicinal chemistry of curcumin: miniperspective. J Med Chem 60(5):1620–1637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nichol AD, Holle MJ, An R (2018) Glycemic impact of non-nutritive sweeteners: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 72:796–804

    CAS  PubMed  Google Scholar 

  • Njanje I, Bagla VP, Beseni BK et al (2017) Defatting of acetone leaf extract of Acacia karroo (Hayne) enhances its hypoglycemic potential. BMC Complement Altern Med 17:482

    PubMed  PubMed Central  Google Scholar 

  • Ojewole JA (2006) Antinociceptive, antiinflammatory and antidiabetic properties of Hypoxis hemerocallidea (Hypoxidaceae) corn (African potato) aqueous extract in mice and rats. J Ethnopharmacol 103:126–134

    PubMed  Google Scholar 

  • Ojewole JA, Adewole SO, Olayiwola G (2006) Hypoglycemic and hypotensive effects of Momordica charantia Linn (Cucurbitaceae) whole-plant aqueous extract in rats. Cardiovasc J South Afr 17:227–232

    Google Scholar 

  • Okoli CO, Obidike IC, Ezike AC et al (2011) Studies on the possible mechanisms of antidiabetic activity of extract of aerial parts of Phyllanthus niruri. Pharm Biol 49(3):248–255

    CAS  PubMed  Google Scholar 

  • Pang B, Zhao LH, Zhou Q et al (2015) Application of berberine on treating type 2 diabetes mellitus. Int J Endocrinol 2015:905749

    PubMed  PubMed Central  Google Scholar 

  • Pari L, Srinivasan S (2010) Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Biomed Pharmacother 64:477–481

    CAS  PubMed  Google Scholar 

  • Parveen K, Khan R, Siddiqui WA (2011) Antidiabetic effects afforded by Terminalia arjuna in high fat-fed and streptozotocin-induced type 2 diabetic rats. Int J Diab Metab 19:23–33

    Google Scholar 

  • Patel DK, Prasad SK, Kumar R et al (2012) An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2(4):320–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Gutierrez RM, Mota Flores JM (2010) Attenuation of hyperglycemia and hyperlipidemia in streptozotocin diabetic rats by chloroform extract of fruits of Ferocactus latispinus and Ferocactus histrix. BOL Latinoam Caribe Plant Med Aromat 9:475–484

    Google Scholar 

  • Prabhu KS, Lobo R, Shirwaikar A (2008) Antidiabetic properties of the alcoholic extract of Sphaeranthus indicus in streptozotocin-nicotinamide diabetic rats. J Pharmac Pharmacol 60:909–916

    CAS  Google Scholar 

  • Prakash O, Kumar R, Mishra A et al (2009) Artocarpus heterophyllus (Jackfruit): an overview. Pharmacogn Rev 3(6):353–358

    CAS  Google Scholar 

  • Purpura M, Lowery RP, Wilson JM et al (2018) Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur J Nutr 57:929–938

    CAS  PubMed  Google Scholar 

  • Rafieian-Kopaei M, Nasri H (2014) The ameliorative effect of Zingiber officinale in diabetic nephropathy. Iran Red Crescent Med J 16:1–2

    Google Scholar 

  • Ragasa C, Ng VAS, Park JH et al (2014) Chemical constituents of Artocarpus altilis and Artocarpus odoratissimus. Res J Pharm Biol Chem Sci 5(4):1081–1087

    Google Scholar 

  • Rahmani AH, Al Shabrmi FM, Aly SM (2014) Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. Int J Pathophysiol Pharmacol 6(2):125–136

    CAS  Google Scholar 

  • Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    CAS  PubMed  Google Scholar 

  • Rao SS, Najam R (2016) Efficacy of combination herbal product (Curcuma longa and Eugenia jambolana) used for diabetes mellitus. Pak J Pharm Sci 29(1):201–204

    CAS  PubMed  Google Scholar 

  • Rather LJ, Ul-Islam S, Mohammad F (2015) Acacia nilotica (L.): a review of its traditional uses, phytochemistry, and pharmacology. Sustain Chem Pharm 2:12–30

    CAS  Google Scholar 

  • Raza H, Prabu SK, John A et al (2011) Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. Int J Mol Sci 12(5):3133–3147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed MJ, Meszaros K, Entes LJ et al (2000) A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49:1390–1394

    CAS  PubMed  Google Scholar 

  • Reher G, Slijepcevic M, Kraus L (1991) Hypoglycemic activity of triterpenes and tannins from Sarcopoterium spinosum and two Sanguisorba species. Planta Med 57:A57–A58

    Google Scholar 

  • Ribes G, Sauvaire Y, Da Costa C et al (1986) Antidiabetic effects of subfractions from fenugreek seeds in diabetic dogs. Proc Soc Exp Biol Med 182:159–166

    CAS  PubMed  Google Scholar 

  • Roufogalis BD (2014) Zingiber officinale (Ginger): a future outlook on it’s potential in prevention and treatment of diabetes and prediabetic states. New J Sci 2014:1–5

    Google Scholar 

  • Rouse M, Younes A, Egan JM (2014) Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity. J Endocrinol 223:107–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan GJ, Wanko NS, Redman AR et al (2003) Chromium as adjunctive treatment for type 2 diabetes. Ann Pharmacother 37:876–885

    CAS  PubMed  Google Scholar 

  • Sabino M, Capomaccio S, Cappelli K et al (2018) Oregano dietary supplementation modifies the liver transcriptome profile in broilers: RNASeq analysis. Res Vet Sci 117:85–91

    CAS  PubMed  Google Scholar 

  • Saleh OM, Awad NS, Soliman MM et al (2016) Insulin-mimetic activity of stevioside on diabetic rats: biochemical, molecular and histopathological study. Afr J Tradit Complement Altern Med 13(2):156–163

    CAS  Google Scholar 

  • Sasaki H, Sunagawa Y, Takahashi K et al (2011) Innovative preparation of curcumin for improved oral bioavailability. Biol Pharm Bull 34(5):660–665

    CAS  PubMed  Google Scholar 

  • Sathiyabama RG, Gandhi GR, Denadai M et al (2018) Evidence of insulin-dependent signaling mechanisms produced by Citrus sinensis (L.) osbeck fruit peal in an insulin resistant diabetic animal model. Food Chem Toxicol Part B 116:86–99

    CAS  Google Scholar 

  • Sauvaire Y, Petit P, Broca C et al (1998) 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. Diabetes 47:206–2010

    CAS  PubMed  Google Scholar 

  • Selvan VT, Manikandan L, Senthil KGP et al (2008) Antidiabetic and antioxidant effect of methanol extract of Artanema sesamoides in streptozotocin-induced diabetic rats. Int J Appl Res Nat Prod 1:25–33

    Google Scholar 

  • Sharman EH, Bondy SC (2016) Melatonin: a safe nutraceutical and clinical agent. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic/Elsevier, Amsterdam, pp 501–509

    Google Scholar 

  • Shen Y, Fukushima M, Ito Y et al (2010) Verification of the antidiabetic effects of Cinnamon (Cinnamomum zeylanicum) using insulin-uncontrolled type 1 diabetic rats and cultured adipocytes. Biosci Biotechnol Biochem 74(12):2418–2425

    CAS  PubMed  Google Scholar 

  • Shetty AJ, Parampalli SM, Bhandarkar R et al (2010) Effect of insulin plant (Costus igneus) leaves on blood glucose levels in diabetic patients: a cross sectional study. J Clin Diagn Res 4:2617–2621

    Google Scholar 

  • Shieh JM, Wu HT, Chung KC et al (2009) Melatonin ameliorates high-fat diet-induced diabetes and stimulates glycogen synthesis via a PKzeta-Akt-GSK3beta pathway in hepatic cells. Pineal Res 47(4):339–344

    CAS  Google Scholar 

  • Shieh J, Cheng KC, Chung HH et al (2011) Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. J Agric Food Chem 59(8):3747–3753

    CAS  PubMed  Google Scholar 

  • Shirwaikar A, Rajendran K, Punitha ISR (2005) Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin-nicotinamide induced type 2 diabetic rats. J Ethnopharmacol 97(2):369–374

    PubMed  Google Scholar 

  • Shivanna N, Naika M, Khanum F et al (2013) Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabet Complications 27:103–113

    Google Scholar 

  • Singh NS, Vats P, Suri S et al (2001) Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol 76:269–271

    CAS  PubMed  Google Scholar 

  • Singh V, Singh SP, Singh SM et al (2015) Combined potentiating action of phytochemical(s) from Cinnamomum tamala and Aloe vera for their anti-diabetic and insulinomimetic effect using in vivo rat and in vitro NIH/3T3 cell culture system. Appl Biochem Biotechnol 175:2542–2563

    CAS  PubMed  Google Scholar 

  • Sivapalan SR (2015) Phytochemical study on medicinal plant-Sida cordifolia Linn. Int J Multidiscipl Res Dev 2(1):200–204

    Google Scholar 

  • Soliman MM, Attia HF, El-Shazly SA et al (2012) Biomedical effects of cinnamon extract on obesity and diabetes relevance in Wistar rats. Am J Biochem Mol Biol 2:133–145

    Google Scholar 

  • Soliman MM, Ahmed MM, El-Shazly SA (2013) Cinnamon extract regulates gene expression of lipid and carbohydrate metabolism in streptozotocin induced diabetic Wistar rats. Am J Biochem Mol Biol 9:172–182

    Google Scholar 

  • Stohs SJ, Hartman MJ (2015) Review of the safety and efficacy of Moringa oleifera. Phytother Res 29:796–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoyanova S, Genus J, Heideg E et al (2011) The food additives insulin and stevioside counteract oxidative stress. Int J Food Sci Nutr 62:207–214

    CAS  PubMed  Google Scholar 

  • SubashBabu P, Prabuseenivasan S, Ignacimuthu S (2007) Cinnamaldehyde: a potential antidiabetic agent. Phytomedicine 14:15–22

    CAS  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res 50:180–185

    Google Scholar 

  • Tanko Y, Yerima M, Mahdi MA et al (2008) Hypoglycemic activity of methanolic stem bark of Adansonnia digitata extract on blood glucose levels of streptozotocin-induced diabetic Wistar rats. Int J Appl Res Nat Prod 1(2):32–36

    Google Scholar 

  • Tanko Y, Mohammed A, Musa KY et al (2012) Evaluation of ethanolic leaf extract of Mucuna pruriens on blood glucose levels in alloxan-induced diabetic rats. Asian J Med Sci 4(1):23–28

    Google Scholar 

  • Tanquilut NC, Tanquilut MRC, Estacio MAC et al (2009) Hypoglycemic effect of Lagerstroemia speciosa (L.) Pers. on alloxan-induced diabetic mice. J Med Plants Res 3(12):1066–1071

    Google Scholar 

  • Tomoda M, Shimada K, Konno C et al (1985) Structure of panaxan B. A hypoglycemic glycan of Panax ginseng roots. Phytochemistry 24:2431–2433

    CAS  Google Scholar 

  • Vetrani C, Sestilli F, Vitale M et al (2018) Metabolic response to amylose-rich wheat-based rusks in overweight individuals. Eur J Clin Nutr 72:904–912

    PubMed  Google Scholar 

  • Viana GS, Medeiros AC, Lacerda AM et al (2004) Hypoglycemic and antilipidemic effects of the aqueous extract of Cissus sicyoides. BMC Pharmacol 4:9

    PubMed  PubMed Central  Google Scholar 

  • Villarruel-López A, López-de la Mora DA, Vásquez-Paulino OD et al (2018) Effect of Moringa oleifera consumption on diabetic rats. BMC Complement Altern Med 18:127

    PubMed  PubMed Central  Google Scholar 

  • Volek JS, Fernandez ML, Feinman RD et al (2008) Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid portioning, and metabolic syndrome. Progr Lipid Res 47(5):307–318

    CAS  Google Scholar 

  • Vongsak B, Sithisarn P, Mangmool S et al (2013) Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Indian Crop Prod 44:566–571

    CAS  Google Scholar 

  • Wadood A, Wadood N, Shah SA (1989) Effects of Acacia arabica and Caralluma edulis on blood sugar levels of normal and alloxan diabetic rabbits. J Pak Med Assoc 39(8):208–212

    CAS  PubMed  Google Scholar 

  • Wang RH, Kim HS, Xiao C et al (2011) Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest 121(11):4477–4490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Fowler MI, Messenger DJ et al (2018) Homoisoflavonoids are potent glucose transporter 2 (GLUT2) inhibitors: a potential mechanism for the glucose-lowering properties of Polygonatum odoratum. J Agric Food Chem 66:3137–3145

    CAS  PubMed  Google Scholar 

  • Westman EC, Feinman RD, Mavropoulos JC et al (2007) Low-carbohydrate nutrition and metabolism. Am J Clin Nutr 86(2):276–284

    CAS  PubMed  Google Scholar 

  • Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. ABBV Trends Endocrinol Metab 13(10):444–451

    CAS  Google Scholar 

  • WHO (2016) Global report on diabetes. http://www.who.int/iris/bitstream/10665

  • Worawalai W, Sompornpisut P, Wacharasindhu S et al (2018) Quercitol: from a taxonomic marker of the genus Quercus to a versatile chiral building block of antidiabetic agents. J Agric Food Chem 66:5741–5745

    CAS  PubMed  Google Scholar 

  • Wu W, Geng H, Liu Z et al (2014) Effect of curcumin on rats/mice with diabetic nephropathy: a systematic review and meta-analysis of randomized controlled trials. J Tradit Chin Med 34:419–429

    PubMed  Google Scholar 

  • Wu X-Z, Xie HQ, Long XH et al (2017) Chemical constituents of Catharanthus roseus. J Chin Pharm Sci 52(8):631–636

    CAS  Google Scholar 

  • Wyk H, Davis R, Davies J (2016) A critical review of low-carbohydrate diets in people with type 2 diabetes. Diabet Med 33(2):148–157

    PubMed  Google Scholar 

  • Xia X, Yan J, Shen Y et al (2011) Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One 6:e16556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang YZ, Shang HC, Gao XM et al (2008) A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 22:851–858

    PubMed  Google Scholar 

  • Xu Z, Wang X, Zhou M et al (2008) The antidiabetic activity of total lignan from Fructus arctii against alloxan-induced diabetes in mice and rats. Phytother Res 22:97–101

    CAS  PubMed  Google Scholar 

  • Yallapu MM, Nagesh PK, Jaggi M et al (2015) Therapeutic applications of curcumin nanoformulations. AAPS J 17(6):1341–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Wang C, Jin Y et al (2018) Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/P13K/AKT pathway. Pharmacol Res 130:466–480

    CAS  PubMed  Google Scholar 

  • Yanarday R, Colak H (1998) Effect of chard (Beta vulgaris L. var cicla) on blood glucose levels in normal and alloxan-induced diabetic rabbits. Pharm Pharmacol Commun 4:309–311

    Google Scholar 

  • Yang MS, Wu MY (2016) Chinese ginseng. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic/Elsevier, Amsterdam, pp 693–705

    Google Scholar 

  • Yassa HD, Tohamy AD (2014) Extract of Moringa oleifera leaves ameliorates streptozotocin-induced diabetes mellitus in adult rats. Acta Histochem 116:844–854

    PubMed  Google Scholar 

  • Yin J, Xing H, Ye J (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57:712–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Chen L (2012) Berberine in type 2 diabetes therapy: a new perspective for an old antidiarrheal drug? Acta Pharm Sin B 2(4):379–386

    CAS  Google Scholar 

  • Zhang H, Kong WJ, Shan YQ et al (2010a) Protein kinase D activation stimulates the transcription of the insulin receptor gene. Mol Cell Endocrinol 330:25–32

    CAS  PubMed  Google Scholar 

  • Zhang H, Wei J, Xue R et al (2010b) Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism 59:285–292

    PubMed  Google Scholar 

  • Zhang W, Zhao J, Wang J et al (2010c) Hypoglycemic effect of aqueous extract of sea buckthorn (Hippophae rhamnoides L.) seed residues in streptozotocin-induced diabetic rats. Phytother Res 24:228–232

    CAS  PubMed  Google Scholar 

  • Zheng J, Cheng J, Zheng S et al (2018) Curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front Pharmacol 9:472

    PubMed  PubMed Central  Google Scholar 

  • Zhou J, Xu G, Ma S et al (2015) Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-kappaB pathways. Biochem Biophys Res Commun 467(4):853–858

    CAS  PubMed  Google Scholar 

  • Zia T, Hasnain SN, Hasan SK et al (2001) Evaluation of the oral hypoglycemic effect of Trigonella foenum-graecum in normal mice. J Ethnopharmacol 75:191–195

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Ms. Robin B. Doss for her technical assistance in preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R.C., Lall, R., Sinha, A., Srivastava, A. (2019). Nutraceuticals for Diabetes in Dogs and Cats. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_35

Download citation

Publish with us

Policies and ethics