Skip to main content

Nutraceuticals Used as Antibacterial Alternatives in Animal Health and Disease

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

In the past decades, an accumulative amount of research has been concentrated on the development of alternatives to antimicrobials to maintain animal welfare and health and performance. A high level of internal and external biosecurity for farms, herds, or flocks is critical because they constantly receive and deliver biological material. Many efforts have been dedicated to demonstrate how viruses or bacteria are shed from poultry or pigs and transmitted among farms, herds, or flocks. A good external biosecurity is crucial to avoid introduction of new biological agents. To overcome the increased rate of mortality and morbidity resulting from the ban of in-feed antibiotics, a number of antibacterial alternatives have been designed. The classes of alternative substances described in this chapter include organic acids and short- and medium-chain fatty acids, phytobiotics and essential oils, antimicrobial peptides, bacteriophages and their endolisins, and immunomodulatory compounds (vaccines). Prebiotics and probiotics, and enzymes, are also notable alternatives to antibacterials but are described in two other chapters. These nutraceuticals are valuable tools in antibiotic-free production systems to support the intestinal health of the animal. Based on a literature search, it is evident that a long and growing list of compounds have been reported for their ability to replace antibacterials as feed additives in animal diets. Research is still needed in the area of nutraceuticals used as antibacterial alternatives in animal health because the perfect alternative to antibacterials does not yet exist. The mechanism of action for these compounds needs to be better defined. Regulations concerning feed additives in the European Union for these nutraceuticals used in animal production are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup FM (2004) Monitoring of antimicrobial resistance among food animals: principles and limitations. J Vet Med B 51(8–9):380–388

    Article  CAS  Google Scholar 

  • Abd El-Motaal AM, Ahmed AMH, Bahakaim ASA et al (2008) Productive performance and immunocompetence of commercial laying hens given diets supplemented with eucalyptus. Int J Poult Sci 7(5):445–449

    Article  CAS  Google Scholar 

  • Abedon ST, Kuhl SJ, Blasdel BG et al (2011) Phage treatment of human infections. Bacteriophage 1(2):66–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Abt MC, Artis D (2013) The dynamic influence of commensal bacteria on the immune response to pathogens. Curr Opin Microbiol 16(1):4–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams C (1999) Nutricines: food components in health and nutrition. Nottingham University Press, Nottingham

    Google Scholar 

  • Adil S, Banday T, Bhat GA et al (2011) Response of broiler chicken to dietary supplementation of organic acids. J Cent Eur Agric 12:498–508

    Article  Google Scholar 

  • Ahmad MS, Krishnan S, Ramakrishna BS et al (2000) Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut 46:493–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali AHH (2014) Productive performance and immune response of broiler chicks as affected by dietary marjoram leaves powder. Egypt Poult Sci J 34:57–70

    Article  Google Scholar 

  • Amass SF, Clark LK (1999) Biosecurity considerations for pork production units. J Swine Health Prod 7:217–228

    Google Scholar 

  • Anadón A (2006) The EU ban of antibiotics as feed additives. Alternatives and consumer safety. J Vet Pharmacol Ther 29(suppl 1):41–44

    Article  Google Scholar 

  • Anadón A, Martínez-Larrañaga MR, Ares I et al (2018) Regulatory aspects for the drugs and chemicals used in food producing animals. In: Gupta RC (ed) Veterinary toxicology. Basic and clinical principles, 3rd edn. Elsevier/Academic Press, Amsterdam, pp 103–131

    Google Scholar 

  • Atterbury RJ, Van Bergen MA, Ortiz F et al (2007) Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol 73(14):4543–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa LN, Rall VL, Fernandes AA et al (2009) Essential oils against foodborne pathogens and spoilage bacteria in minced meat. Foodborne Pathog Dis 6:725–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardina C, Spricigo DA, Cortés P et al (2012) Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl Environ Microbiol 78:6600–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boman HG (1991) Antibacterial peptides: key components needed in immunity. Cell 65(2):205–207

    Article  CAS  PubMed  Google Scholar 

  • Bren L (2007) Bacteria-eating virus approved as food additive. FDA Consum 41(1):20–22

    PubMed  Google Scholar 

  • Brenes A, Roura E (2010) Essential oils in poultry nutrition: main effects and modes of action. Anim Feed Sci Technol 158(1–2):1–14

    Article  CAS  Google Scholar 

  • Canani RB, Di Costanzo M, Leone L et al (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17(12):1519–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho CM, Gannon BW, Halfhide DE et al (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol 10:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Castillo M, Martín-Orúe SM, Roca M et al (2006) The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs. J Anim Sci 84(10):2725–2734

    Article  CAS  PubMed  Google Scholar 

  • Cavaleri F, Bashar E (2018) Potential synergies of β-hydroxybutyrate and butyrate on the modulation of metabolism, inflammation, cognition, and general health. J Nutr Metab 2018:7195760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandar B, Poovitha S, Ilango K et al (2017) Inhibition of New Delhi metallo-β-lactamase 1 (NDM-1) producing Escherichia coli IR-6 by selected plant extracts and their synergistic actions with antibiotics. Front Microbiol 8:1580

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaveerach P, Keuzenkamp DA, Lipman LJ et al (2004) Effect of organic acids in drinking water for young broilers on Campylobacter infection, volatile fatty acid production, gut microflora and histological cell changes. Poult Sci 83(3):330–334

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wu W, Millman A et al (2014) Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat Immunol 15(10):938–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng G, Hao H, Xie S et al (2014) Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 5:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury R, Islam KMS et al (2009) Effect of citric acid, avilamycin, and their combination on the performance, tibia ash, and immune status of broilers. Poult Sci 88:1616–1622

    Article  CAS  PubMed  Google Scholar 

  • Clavijo V, Vives Flórez MJ (2017) The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult Sci 97:1–16

    Google Scholar 

  • Cogliani C, Goossens H, Greko C (2011) Restricting antimicrobial use in food animals: lessons from Europe. Microbe 6(6):274–279

    Google Scholar 

  • Collineau L, Rojo-Gimeno C, Léger A et al (2017) Herd-specific interventions to reduce antimicrobial usage in pig production without jeopardising technical and economic performance. Prev Vet Med 144:167–178

    Article  CAS  PubMed  Google Scholar 

  • Cook SR, Maiti PK, DeVinney R et al (2007) Avian- and mammalian-derived antibodies against adherence-associated proteins inhibit host cell colonization by Escherichia coli O157:H7. J Appl Microbiol 103(4):1206–1219

    Article  CAS  PubMed  Google Scholar 

  • Cooper IR (2016) A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. J Microbiol Methods 130:38–47

    Article  CAS  PubMed  Google Scholar 

  • Cosby DE, Cox NA, Harrison MA et al (2015) Salmonella and antimicrobial resistance in broilers: a review. J Appl Poult Res 24:408–426

    Article  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788

    Article  CAS  PubMed  Google Scholar 

  • Dahiya JP, Wilkie DC, Van Kessel AG et al (2006) Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim Feed Sci Technol 129(1–2):60–88

    Article  Google Scholar 

  • Davies G, Genini S, Bishop SC, Giuffra E (2009) An assessment of opportunities to dissect host genetic variation in resistance to infectious diseases in livestock. Animal 3(3):415–436

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Sanchez S, D’Souza D, Biswas D et al (2015) Botanical alternatives to antibiotics for use in organic poultry production. Poult Sci 94(6):1419–1430

    Article  CAS  PubMed  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643

    Article  CAS  PubMed  Google Scholar 

  • Dierick NA, Decuyperea JA, Molly K et al (2002) The combined use of triacylglycerols (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative to nutritional antibiotics in piglet nutrition: II. In vivo release of MCFAs in gastric cannulated and slaughtered piglets by endogenous and exogenous lipases; effects on the luminal gut flora and growth performance. Livest Prod Sci 76(1–2):1–16

    Article  Google Scholar 

  • Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88(2):308–316

    Article  CAS  PubMed  Google Scholar 

  • Dorne JL, Heppner C, Kass GE et al (2013) Special issue: risk assessment of undesirable substances in feed. Toxicol Appl Pharmacol 270(3):185–186

    Article  CAS  PubMed  Google Scholar 

  • EC (2001) Directive 2001/82/EC of the European Parliament and of the Council of 6 November 2001 on the community code relating to veterinary medicinal products (OJ L 136, 30.4.2004)

    Google Scholar 

  • EC (2003) Regulation (EC) No. 1831/2003 (EC, 2003) of the European Parliament and of the Council of 22 September on additives for use in animal nutrition (OJ L 268, 18.10.2003)

    Google Scholar 

  • EC (2004) Directive 2004/28/EC of the European Parliament and of the Council of 31 March 2004 amending Directive 2001/82/EC on the Community code relating to veterinary medicinal products (OJ L 136, 30/04/2004)

    Google Scholar 

  • EC (2008) Commission Regulation (EC) No 429/2008 of 25 April 2008 on detailed rules for the implementation of Regulation (EC) No 1831/2003 of the European Parliament and of the Council as regards the preparation and the presentation of applications and the assessment and the authorisation of feed additives (OJ No. L 133, 22.5.2008)

    Google Scholar 

  • EC (2009) Regulation (EC) No 767/2009 of the European Parliament and of the Council of 13 July 2009 on the placing on the market and use of feed, amending European Parliament and Council Regulation (EC) No 1831/2003 and repealing Council Directive 79/373/EEC, Commission Directive 80/511/EEC, Council Directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and Commission Decision 2004/217/EC (OJ No. 229, 1.9.2009)

    Google Scholar 

  • EC (2015) Commission notice. Guidelines for the prudent use of antimicrobials in veterinary medicine (2015/C 299/04) (OJ No. C 299, 11.09.2015)

    Google Scholar 

  • EC (2018) DG Health and Food Safety. Overview report non-EU countries’ national policies and measures on antimicrobial resistance. Publications Office of the European Union, Luxembourg. isbn:978-92-79-43534-8

    Google Scholar 

  • EFSA (2009) Guidance on safety assessment of botanicals and botanical preparations intended for use as ingredients in food supplements. EFSA J 7(9):1249

    Google Scholar 

  • EFSA (2014) Scientific opinion on a qualified presumption of safety (QPS) approach for the safety assessment of botanicals and botanical preparations. EFSA J 12(3):3593

    Google Scholar 

  • EMA (2012) CVMP. Opinion following an Article 35 referral for all veterinary medicinal products containing systemically administered (parenteral and oral) 3rd and 4th generation cephalosporins intended for use in food producing species. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/veterinary/referrals/Cephalosporins/vet_referral_000056.jsp%26mid=WC0b01ac05805c5170

  • EMA (2016a) Opinion of the committee for medicinal products for veterinary use pursuant to Article 35 of Directive 2001/82/EC for veterinary medicinal products EMEA/V/A/118. Opinion 8 December 2016 EMA/CVMP/746319/2016

    Google Scholar 

  • EMA (2016b) Updated advice on the use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. 26 May 2016. EMA/231573/2016

    Google Scholar 

  • EU (2017) A European One Health Action Plan against Antimicrobial Resistance (AMR). https://ec.europa.eu/health/amr/sites/amr/files/amr_action_plan_2017_en.pdf

  • Regulation (EU) 2019/6 of the European Parliament and of the council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC (OJ of EU L4/43, 7.1.2019)

    Google Scholar 

  • FAWC (1993) Farm Animal Welfare Council: second report on priorities for research and development in farm animal welfare. Tolworth, MAFF, 1993

    Google Scholar 

  • FDA (2013) Guidance for Industry #213: New animal drugs and new animal drug combination products administered in or on medicated feed or drinking water of food-producing animals: recommendations for drug sponsors for voluntarily aligning product use conditions withGFI#209. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM299624.pdf

  • Feng Y, Zhang H, Wu Z et al (2014) Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence 5(4):477–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11(5):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frese SA, Parker K, Calvert CC et al (2015) Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Zu Y, Chen L et al (2007) Antimicrobial activity of clove and rosemary oils alone and in combination. Phytother Res 21:989–994

    Article  PubMed  Google Scholar 

  • Gadde U, Kim WH, Oh ST et al (2017) Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev 18(1):26–45

    Article  CAS  PubMed  Google Scholar 

  • Geier MS, Torok VA, Guo P et al (2011) The effects of lactoferrin on the intestinal environment of broiler chickens. Br Poult Sci 52(5):564–572

    Article  CAS  PubMed  Google Scholar 

  • Gill PA, van Zelm MC, Muir JG et al (2017) Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther 48:1–20

    Google Scholar 

  • Gloaguen M, Le Floc’h N, Primot Y et al (2014) Performance of piglets in response to the standardized ileal digestible phenylalanine and tyrosine supply in low-protein diets. Animal 8(9):1412–1419

    Article  CAS  PubMed  Google Scholar 

  • Grant A, Hashem F, Parveen S (2016) Salmonella and Campylobacter: antimicrobial resistance and bacteriophage control in poultry. Food Microbiol 53:104–109

    Article  PubMed  Google Scholar 

  • Grashorn MA (2010) Use of phytobiotics in broiler nutrition—an alternative to infeed antibiotics? J Anim Feed Sci 19:338–347

    Article  Google Scholar 

  • Gresse R, Chaucheyras-Durand F, Fleury MA et al (2017) Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol 25(10):851–873

    Article  CAS  PubMed  Google Scholar 

  • Guo FC, Williams BA, Kwakkel RP et al (2004) Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens. Poult Sci 83(2):175–182

    Article  CAS  PubMed  Google Scholar 

  • Gyles CL (2008) Antimicrobial resistance in selected bacteria from poultry. Anim Health Res Rev 9(2):149–158

    Article  PubMed  Google Scholar 

  • Han Y-K, Hwan Hwang IL, Thacker PA (2011) Use of a micro-encapsulated eucalyptus-medium chain fatty acid product as an alternative to zinc oxide and antibiotics for weaned pigs. J Swine Health Prod 19(1):34–43

    Google Scholar 

  • Hashemi SR, Davoodi H (2011) Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet Res Commun 35:169–180

    Article  PubMed  Google Scholar 

  • Hodin R (2000) Maintaining gut homeostasis: the butyrate-NF-kappaB connection. Gastroenterology 118(4):798–801

    Article  CAS  PubMed  Google Scholar 

  • Hong SM, Hwang JH, Kim IH (2012) Effect of medium-chain triglyceride (mct) on growth performance, nutrient digestibility, blood characteristics in weanling pigs. Asian-Aust J Anim Sci 25(7):1003–1008

    Article  CAS  Google Scholar 

  • Hovi M, Sundrum A, Thamsborg SM (2003) Animal health and welfare in organic livestock production in Europe: current state and future challenges. Lives Prod Sci 80(1–2):41–53

    Article  Google Scholar 

  • Huyghebaert G, Ducatelle R, Van Immerseel F (2011) An update on alternatives to antimicrobial growth promoters for broilers. Vet J 187:182–188

    Article  CAS  PubMed  Google Scholar 

  • IACG (2018) Antimicrobial resistance: invest in innovation and research, and boost R&D and access. International Coordination Group on Antimicrobial Resistance (IACG) discussion paper, June 2018

    Google Scholar 

  • Isaacson R, Kim HB (2012) The intestinal microbiome of the pig. Anim Health Res Rev 13(1):100–109

    Article  PubMed  Google Scholar 

  • Jamroz D, Wiliczkiewicz A, Wertelecki T et al (2005) Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br Poult Sci 46(4):485–493

    Article  CAS  PubMed  Google Scholar 

  • Józefiak D, Sip A, Rutkowski A et al (2012) Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poult Sci 91(8):1899–1907

    Article  PubMed  CAS  Google Scholar 

  • Józefiak D, Kierończyk B, Juśkiewicz J et al (2013) Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS One 8(12):e85347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamada N, Seo SU, Chen GY et al (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335

    Article  CAS  PubMed  Google Scholar 

  • Khan SH, Iqbal J (2016) Recent advances in the role of organic acids in poultry nutrition. J Appl Anim Res 44:359–369

    Article  CAS  Google Scholar 

  • Kittler S, Fischer S, Abdulmawjood A et al (2013) Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks. Appl Environ Microbiol 79:7525–7533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laanen M, Persoons D, Ribbens S et al (2013) Relationship between biosecurity and production/antimicrobial treatment characteristics in pig herds. Vet J 198:508–512

    Article  CAS  PubMed  Google Scholar 

  • Laanen M, Maes D, Hendriksen C et al (2014) Pig, cattle and poultry farmers with a known interest in research have comparable perspectives on disease prevention and on-farm biosecurity. Prev Vet Med 115:1–9

    Article  CAS  PubMed  Google Scholar 

  • Li P, Piao X, Ru Y et al (2012) Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian-Aust J Anim Sci 25(11):1617–1626

    Article  CAS  Google Scholar 

  • Liu Y, Han F, Xie Y et al (2011) Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals 24(6):1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Loc-Carrillo C, Abedon S (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariadason JM, Barkla DH, Gibson PR (1997) Effect of short-chain fatty acids on paracellular permeability in Caco-2 intestinal epithelium model. Am J Phys 272:G705–G712

    CAS  Google Scholar 

  • Marounek M, Skřivanová E, Rada V (2003) Susceptibility of Escherichia coli to C 2–C 18 fatty acids. Folia Microbiol 48(6):731–735

    Article  CAS  Google Scholar 

  • Międzybrodzki R, Borysowski J, Weber-Dąbrowska B et al (2012) Clinical aspects of phage therapy. Adv Virus Res 83:73–121

    Article  PubMed  CAS  Google Scholar 

  • Millet S, Maertens L (2011) The European ban on antibiotic growth promoters in animal feed: from challenges to opportunities. Vet J 187(2):143–144

    Article  PubMed  Google Scholar 

  • Mitsch P, Zitterl-Eglseer K, Köhler B et al (2004) The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poult Sci 83(4):669–675

    Article  CAS  PubMed  Google Scholar 

  • Nilsson AS (2014) Phage therapy constraints and possibilities. Ups J Med Sci 119:192–198

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Flaherty S, Ross RP, Coffey A (2009) Bacteriophage and their lysins for elimination of infectious bacteria: review article. FEMS Microbiol Rev 33:801–819

    Article  PubMed  CAS  Google Scholar 

  • Oliveira H, Azeredo J, Lavigne R et al (2012) Bacteriophage endolysins as a response to emerging foodborne pathogens. Trends Food Sci Technol 28:103–115

    Article  CAS  Google Scholar 

  • Omonijo FA, Ni L, Gong J et al (2018) Essential oils as alternatives to antibiotics in swine production. Anim Nutr 4(2):126–136

    Article  PubMed  Google Scholar 

  • Oostindjer M, Bolhuis JE, Mendl M et al (2011) Learning how to eat like a pig: effectiveness of mechanisms for vertical social learning in piglets. Anim Behav 82(3):503–511

    Article  Google Scholar 

  • Over K, Hettiarachchy N, Johnson M et al (2009) Effect of organic acids and plant extracts on Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium in broth culture model and chicken meat systems. J Food Sci 74:515–521

    Article  CAS  Google Scholar 

  • Panda AK, Rama Rao SV, Raju MVLN et al (2009) Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Aust J Anim Sci 22:1026–1031

    Article  CAS  Google Scholar 

  • Patterson JA, Burkholder KM (2003) Applications of prebiotics and probiotics in poultry production. Poult Sci 82:627–631

    Article  CAS  PubMed  Google Scholar 

  • Petri D, Hillb JE, Van Kessel AG (2010) Microbial succession in the gastrointestinal tract (GIT) of the preweaned pig. Lives Sci 133(1–3):107–109

    Article  Google Scholar 

  • Postma M, Stärk KDC, Sjölund M et al (2015) Alternatives to the use of antimicrobial agents in pig production: a multi-country expert-ranking of perceived effectiveness, feasibility and return on investment. Prev Vet Med 118:457–466

    Article  PubMed  Google Scholar 

  • Postma M, Backhans A, Collineau L et al (2016a) Evaluation of the relationship between the biosecurity status, production parameters, herd characteristics and antimicrobial usage in farrow-to-finish pig production in four EU countries. Porcine Health Manag 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Postma M, Backhans A, Collineau L et al (2016b) The biosecurity status and its associations with production and management characteristics in farrow-to-finish pig herds. Animal 10(3):478–489

    Article  CAS  PubMed  Google Scholar 

  • Pouillot F, Chomton M, Blois H et al (2012) Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by O25b:H4-ST131 E. coli strain producing CTX-M-15. Antimicrob Agents Chemother 56(7):3568–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott JF (2008) Antimicrobial use in food and companion animals. Anim Health Res Rev 9(2):127–133

    Article  PubMed  Google Scholar 

  • Rafacz-Livingston K, Parsons C, Jungk R (2005) The effects of various organic acids on phytate phosphorus utilization in chicks. Poult Sci 84:1356–1362

    Article  CAS  PubMed  Google Scholar 

  • Ragland D, Stevenson D, Hill MA (2008) Oregano oil and multi-component carbohydrases as alternatives to antimicrobials in nursery diets. J Swine Health Prod 16(5):238–243

    Google Scholar 

  • Ricke S (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639

    Article  CAS  PubMed  Google Scholar 

  • Rose E, Nunan C (2016) Alliance to save our antibiotics. Antibiotic use in the UK dairy sector. http://www.saveourantibiotics.org/media/1762/antibiotic-use-in-the-uk-dairy-sector.pdf

  • Rossi R, Pastorelli G, Cannata S et al (2010) Recent advances in the use of fatty acids as supplements in pig diets: a review. Anim Feed Sci Technol 162(1–2):1–11

    Article  CAS  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):1–25

    Article  CAS  Google Scholar 

  • Samanta S, Haldar S, Ghosh TK (2008) Production and carcass traits in broiler chickens given diets supplemented with inorganic trivalent chromium and an organic acid blend. Br Poult Sci 49:155–163

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Blecha F (2008) Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev 9(2):227–235

    Article  PubMed  Google Scholar 

  • Sarica S, Ciftci A, Demir E et al (2005) Use of an antibiotic growth promoter and two herbal natural feed additives with and without exogenous enzymes in wheat based broiler diets. S Afr J Anim Sci 35(1):61–72

    CAS  Google Scholar 

  • Schmelcher M, Shabarova T, Eugster MR et al (2010) Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol 76(17):5745–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelcher M, Donovan DM, Loessner MJ (2012a) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171

    Article  CAS  PubMed  Google Scholar 

  • Schmelcher M, Powell AM, Becker SC et al (2012b) Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 78(7):2297–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serafino A, Sinibaldi Vallebona P et al (2008) Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response. BMC Immunol 9:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin B, Park W (2018) Zoonotic diseases and phytochemical medicines for microbial infections in veterinary science: current state and future perspective. Front Vet Sci 5:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin MS, Han SK, Ji AR, Kim KS, Lee WK (2008) Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J Appl Microbiol 105(6):2203–2212

    Article  CAS  PubMed  Google Scholar 

  • Simmons KJ, Chopra I, Fishwick CWG (2010) Structure-based discovery of antibacterial drugs. Nat Rev Microbiol 8:501–510

    Article  CAS  PubMed  Google Scholar 

  • Skrivanová E, Marounek M, Dlouhá G et al (2005) Susceptibility of Clostridium perfringens to C-C fatty acids. Lett Appl Microbiol 41(1):77–81

    Article  PubMed  CAS  Google Scholar 

  • Skrzypek T, Valverde Piedra JL, Skrzypeka H et al (2007) Intestinal villi structure during the development of pig and wild boar crossbreed neonates. Livest Sci 109(1–3):38–41

    Article  Google Scholar 

  • Smith HW, Huggins MB, Shaw KW (1987) The control of experimental Escherichia coli diarrhea in calves by means of bacteriophages. J Gen Microbiol 133:1111–1126

    CAS  PubMed  Google Scholar 

  • Solis de los Santos F, Donoghue AM, Venkitanarayanan K et al (2008) Therapeutic supplementation of caprylic acid in feed reduces Campylobacter jejuni colonization in broiler chicks. Appl Environ Microbiol 74(14):4564–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiljar M, Merkler D, Trajkovski M (2017) The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front Immunol 8:1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein HH, Kil DY (2006) Reduced use of antibiotic growth promoters in diets fed to weanling pigs: dietary tools, part 2. Anim Biotechnol 17(2):217–231

    Article  CAS  PubMed  Google Scholar 

  • Suchodolski JS, Ruaux CG, Steiner JM et al (2005) Assessment of the qualitative variation in bacterial microflora among compartments of the intestinal tract of dogs by use of a molecular fingerprinting technique. Am J Vet Res 66:1556–1562

    Article  CAS  PubMed  Google Scholar 

  • Sulakvelidze A (2005) Phage therapy: an attractive option for dealing with antibiotic-resistant bacterial infections. Drug Discov Today 10(12):807–809

    Article  PubMed  Google Scholar 

  • Sulakvelidze A (2011) Safety by nature: potential bacteriophage applications. Microbe 6:122–126

    Google Scholar 

  • Sulakvelidze A (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric 93:3137–3146

    Article  CAS  PubMed  Google Scholar 

  • Summers WC (2012) The strange history of phage therapy. Bacteriophage 2(2):130–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Tellez GI, Jaeger L, Dean CE et al (1993) Effect of prolonged administration of dietary capsaicin on Salmonella enteritidis infection in leghorn chicks. Avian Dis 37(1):143–148

    Article  CAS  PubMed  Google Scholar 

  • Thacker PA (2013) Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol 4(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timbermont L, Lanckriet A, Gholamiandehkordi AR et al (2009) Origin of Clostridium perfringens isolates determines the ability to induce necrotic enteritis in broilers. Comp Immunol Microbiol Infect Dis 32(6):503–512

    Article  PubMed  Google Scholar 

  • Timbermont L, Lanckriet A, Dewulf J et al (2010) Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian Pathol 39(2):117–121

    Article  CAS  PubMed  Google Scholar 

  • Tini M, Jewell UR, Camenisch G et al (2002) Generation and application of chicken egg-yolk antibodies. Comp Biochem Physiol A Mol Integr Physiol 131(3):569–574

    Article  CAS  PubMed  Google Scholar 

  • Toro H, Price SB, McKee AS et al (2005) Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis 49:118–124

    Article  CAS  PubMed  Google Scholar 

  • Turner PV (2018) Improving animal production biosecurity to minimise global one health risks. IAHJ 5(4):28–30

    Google Scholar 

  • Van Der Wielen PW, Biesterveld S, Notermans S et al (2000) Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl Environ Microbiol 66:2536–2540

    Article  PubMed Central  Google Scholar 

  • Van Dijk A, Herrebout M, Tersteeg-Zijderveld MH et al (2012) Campylobacter jejuni is highly susceptible to killing by chicken host defense peptide cathelicidin-2 and suppresses intestinal cathelicidin-2 expression in young broilers. Vet Microbiol 160(3–4):347–354

    Article  PubMed  CAS  Google Scholar 

  • Van Dijk A, Molhoek EM, Veldhuizen EJ, Tjeerdsma-van Bokhoven JL, Wagendorp E, Bikker F, Haagsman HP (2009) Identification of chicken cathelicidin-2 core elements involved in antibacterial and immunomodulatory activities. Mol Immunol 46(13):2465–2473

    Article  PubMed  CAS  Google Scholar 

  • Van Dijk A, Molhoek EM, Bikker FJ, Yu PL, Veldhuizen EJA, Haagsman HP (2011) Avian cathelicidins: paradigms for the development of anti-infectives. Vet Microbiol 153(1–2):27–36

    Article  PubMed  CAS  Google Scholar 

  • Van Immerseel F, Russell JB, Flythe MD et al (2006) The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathol 35(3):182–188

    Article  PubMed  CAS  Google Scholar 

  • Vanderhoof JA, Whitney DB, Antonson DL et al (1999) Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. J Pediatr 135(5):564–568

    Article  CAS  PubMed  Google Scholar 

  • Vicente JL, Lopez C, Avila E et al (2007) Effect of dietary natural capsaicin on experimental Salmonella enteritidis infection and yolk pigmentation in laying hens. Int J Poult Sci 6:393–396

    Article  Google Scholar 

  • Von Borel E, Sørensen JT (2004) Organic livestock production in Europe: aims, rules and trends with special emphasis on animal health and welfare. Lives Prod Science 90(1):3–9

    Article  Google Scholar 

  • Walker WL, Epperson WB, Wittum TE et al (2012) Characteristics of dairy calf ranches: morbidity, mortality, antibiotic use practices, and biosecurity and biocontainment practices. J Dairy Sci 95(4):2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Wang YZ, Shan TZ, Xu ZR et al (2007) Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs. Anim Feed Sci Technol 135(3–4):263–272

    Article  CAS  Google Scholar 

  • Wang HT, Li YH, Chou IP et al (2013) Albusin B modulates lipid metabolism and increases antioxidant defense in broiler chickens by a proteomic approach. J Sci Food Agric 93(2):284–292

    Article  CAS  PubMed  Google Scholar 

  • Wernicki A, Nowaczek A, Urban-Chmiel R (2017) Bacteriophage therapy to combat bacterial infections in poultry. Virol J 14:179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Windisch W, Schedle K, Plitzner C et al (2008) Use of phytogenic products as feed additives for swine and poultry. J Anim Sci 86(14 suppl):E140–E148

    Article  CAS  PubMed  Google Scholar 

  • Wong CL, Sieo CC, Tan WS et al (2014) Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar typhimurium in chickens. Int J Food Microbiol 172:92–101

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Ajuwon KM (2017) Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signalling pathways. PLoS One 12(6):e0179586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84(15):5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer M, Vukov N, Scherer S et al (2002) The murein hydrolase of the bacteriophage ϕ3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68:5311–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Project S2013/ABI-2728 (ALIBIRD-CM Program) from Comunidad de Madrid, and by Project Ref. RTA2015-00010-C03-03 from Ministerio de Economía, Industria y Competitividad, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Anadón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anadón, A., Ares, I., Martínez-Larrañaga, M.R., Martínez, M.A. (2019). Nutraceuticals Used as Antibacterial Alternatives in Animal Health and Disease. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_22

Download citation

Publish with us

Policies and ethics