Skip to main content

Prebiotics and Probiotics in Feed and Animal Health

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

The ban of antimicrobial growth promoters (AGP) has been a challenge for animal nutrition, increasing the need to find alternative methods to control and prevent the colonization of pathogenic bacteria. The elimination of antibacterials in animal nutrition has had adverse consequences on the production, health, and welfare of animals. Much research has been focused on the development of antibiotic alternatives to maintain or improve animal health and performance. Modulation of the gut microbiota with zoo-technical feed additives such as prebiotics and probiotics for host protection to support animal husbandry, including livestock, poultry, and fish farming, is the key to maximize productivity and maintain animal health and welfare. This chapter describes the classes of available prebiotics, probiotics, and synbiotics alternatives to increase productivity and aid performance in several food-producing animals. For farm animals, optimal combinations of various alternatives coupled with good management and husbandry practice, better housing conditions, and improvement of biosecurity measures are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Khalek E, Kalmar ID, De Vroey M et al (2012) Indirect evidence for microbiota reduction through dietary mannanoligosaccharides in the pigeon, an avian species without functional caeca. J Anim Physiol Anim Nutr 96:1084–1090

    CAS  Google Scholar 

  • Alloui MN, Szczurek W, Świątkiewicz S (2013) The usefulness of prebiotics and probiotics in modern poultry nutrition: a review. Ann Anim Sci 13:17–32

    Google Scholar 

  • Anadón A, Martínez-Larrañaga MR, Martínez MA (2006) Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul Toxicol Pharmacol 45:91–95

    PubMed  Google Scholar 

  • Anadón A, Martínez-Larrañaga MR, Arés I, Martínez MA (2016) Chapter 1. Prebiotics and probiotics: an assessment of their safety and health benefits. In: Ross Watson R, Preedy VR (eds) Probiotics, prebiotics, and synbiotics. Bioactive foods in promoting health: probiotics and prebiotics. Academic, San Diego, CA, pp 3–23

    Google Scholar 

  • Anadón A, Martínez-Larrañaga MR, Aresi MMA (2016a) Chapter 54. Prebiotics: safety and toxicity considerations. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic, Amsterdam, pp 757–775

    Google Scholar 

  • Anadón A, Martínez-Larrañaga MR, Aresi MMA (2016b) Chapter 55. Probiotics: safety and toxicity considerations. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic, Amsterdam, pp 777–853

    Google Scholar 

  • Apajalahti J, Kettunen A, Graham H (2004) Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult Sci J 60:223–232

    Google Scholar 

  • Awad WA, Ghareeb K, Abdel-Raheem S et al (2009) Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci 88:49–55

    CAS  PubMed  Google Scholar 

  • Ballou AL, Rizwana AA, Mendoza MA et al (2016) Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci 3:2

    PubMed  PubMed Central  Google Scholar 

  • Barko PC, McMichael MA, Swanson KS et al (2018) The gastrointestinal microbiome: a review. J Vet Intern Med 32:9–25

    CAS  PubMed  Google Scholar 

  • Baurhoo B, Letellier A, Zhao X et al (2007) Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poult Sci 86(12):2509–2516

    CAS  PubMed  Google Scholar 

  • Beckmann L, Simon O, Vahjen W (2006) Isolation and identification of mixed linked β-glucan degrading bacteria in the intestine of broiler chickens and partial characterization of respective 1, 3-1, 4-β-glucanase activities. J Basic Microbiol 46(3):175–185

    CAS  PubMed  Google Scholar 

  • Bedford A, Li Z, Li M et al (2012) Epidermal growth factor-expressing Lactococcus lactis enhances growth performance of early-weaned pigs fed diets devoid of blood plasma. J Anim Sci 90:4–6

    PubMed  Google Scholar 

  • Bednarczyk M, Stadnicka K, Kozlowska I et al (2016) Influence of different prebiotics and mode of their administration on broiler chicken performance. Animal 10:1271–1279

    CAS  PubMed  Google Scholar 

  • Belhassen T, Simon E, Potel A et al (2016) Effect of diet supplementation with live yeast (Saccharomyces cerevisiae) on performance of rabbit does and their progenies. World Rabbit Sci 24:77–82

    Google Scholar 

  • Bengmark S, Martindale R (2005) Prebiotics and synbiotics in clinical medicine. Nutr Clin Pract 20:244–261

    PubMed  Google Scholar 

  • Berg ME, Miller ME, Yeoman CJ et al (2012) Phage–bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ Microbiol 14(1):207–227

    Google Scholar 

  • Biagi G, Cipollini I, Bonaldo A et al (2013) Effect of feeding a selected combination of galacto-oligosaccharides and a strain of Bifidobacterium pseudocatenulatum on the intestinal microbiota of cats. Am J Vet Res 74:90–95

    CAS  PubMed  Google Scholar 

  • Biliouris K, Babson D, Schmidt-Dannert C et al (2012) Stochastic simulations of a synthetic bacteria-yeast ecosystem. BMC Syst Biol 6(1):58

    PubMed  PubMed Central  Google Scholar 

  • Blajman JE, Zbrun MV, Astesana DM et al (2015) Probióticos en pollos parrilleros: una estrategia para los modelos productivos intensivos? Rev Argent Microbiol 47(4):360–367

    PubMed  Google Scholar 

  • Bogusławska-Tryk M, Szymeczko R, Piotrowska A, Burlikowska K, Śliżewska K (2015) Ileal and cecal microbial population and short-chain fatty acid profile in broiler chickens fed diets supplemented with lignocellulose. Pak Vet J 35(2):212–216

    Google Scholar 

  • Boonanuntanasarn S, Ditthab K, Jangprai A et al (2018) Effects of microencapsulated Saccharomyces cerevisiae on growth, hematological indices, blood chemical, and immune parameters and intestinal morphology in striped catfish, Pangasianodon hypophthalmus. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-018-9404-0

    Google Scholar 

  • Bradley TJ (2008) Active transport in insect recta. J Exp Biol 211(Pt 6):835–836

    PubMed  Google Scholar 

  • Brisbin JT, Gong J, Parvizi P et al (2010) Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin Vaccine Immunol 17(9):1337–1343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brisbin JT, Gong J, Orouji S et al (2011) Oral treatment of chickens with lactobacilli influences elicitation of immune responses. Clin Vaccine Immunol 18(9):1447–1455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calik A, Ergün A (2015) Effect of lactulose supplementation on growth performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poult Sci 94(9):2173–2182

    CAS  PubMed  Google Scholar 

  • Callaway TR, Edrington TS, Anderson RC et al (2008) Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. J Anim Sci 86:163–178

    Google Scholar 

  • Campanile KA, Zicarelli F, Vecchio D et al (2008) Effects of Saccharomyces cerevisiae on in vivo organic matter digestibility and milk yield in buffalo cows. Livest Sci 114:358–361

    Google Scholar 

  • Castex M, Chim L, Pham D et al (2008) Probiotic P. acidilactici application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquaculture 275:183–193

    Google Scholar 

  • Chambers JR, Gong J (2011) The intestinal microbiota and its modulation for Salmonella control in chickens. Food Res Int 44(10):3149–3159

    Google Scholar 

  • Chaucheyras-Durand F, Durand H (2010) Probiotics in animal nutrition and health. Benef Microbes 1(1):3–9

    CAS  PubMed  Google Scholar 

  • Chaucheyras-Durand F, Walker ND, Bach A (2008) Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol 145:5–26

    CAS  Google Scholar 

  • Che TM, Johnson RW, Kelley KW et al (2011) Mannan oligosaccharide improves immune responses and growth efficiency of nursery pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci 89:2592–2602

    CAS  PubMed  Google Scholar 

  • Choct M (2009) Managing gut health through nutrition. Br Poult Sci 50(1):9–15

    CAS  PubMed  Google Scholar 

  • Choct M, Hughes RJ, Wang J et al (1996) Increased small intestinal fermentation is partly responsible for the antinutritive activity of non-starch polysaccharides in chickens. Br Poult Sci 37:609–621

    CAS  PubMed  Google Scholar 

  • Clavijo V, Vives Flórez MJ (2018) The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult Sci 0:1–16

    Google Scholar 

  • Collado MC, Gueimonde M, Hernandez M et al (2005) Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot 68(12):2672–2678

    PubMed  Google Scholar 

  • Combes S, Fortun-Lamothe L, Cauquil L, Gidenne T (2013) Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal 7:1429–1439

    CAS  PubMed  Google Scholar 

  • Coverdale JA (2016) Horse species symposium: can the microbiome of the horse be altered to improve digestion? J Anim Sci 94:2275–2281

    CAS  PubMed  Google Scholar 

  • Cox CM, Dalloul RA (2015) Immunomodulatory role of probiotics in poultry and potential in ovo application. Benef Microbes 6(1):45–52

    CAS  PubMed  Google Scholar 

  • Da Costa PM, Loureiro L, Matis AJF (2013) Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. Int J Environ Res Public Health 10:278–294

    PubMed  PubMed Central  Google Scholar 

  • De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66

    PubMed  Google Scholar 

  • Deusch O, O’Flynn C, Colyer A et al (2015) A longitudinal study of the feline faecal microbiome identifies changes into early adulthood irrespective of sexual development. PLoS One 10:e0144881

    PubMed  PubMed Central  Google Scholar 

  • Durst L (1996) Inclusion of fructo- and galacto-oligosaccharides in broiler diets. Arch Geflugelkd 60:160–164

    CAS  Google Scholar 

  • Eeckhaut V, Van Immerseel F, Teirlynck E et al (2008) Butyricicoccus pullicaecorum gen. nov., sp. nov., an anaerobic, butyrate-producing bacterium isolated from the caecal content of a broiler chicken. Int J Syst Evol Microbiol 58(12):2799–2802

    CAS  PubMed  Google Scholar 

  • Fairbrother JM, Nadeau É, Gyles CL (2005) Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 6(1):17–39

    CAS  PubMed  Google Scholar 

  • FAO (2007) Technical meeting report. FAO Technical Meeting on Prebiotics, Food Quality and Standards Service (AGNS), 15–16 Sept 2007

    Google Scholar 

  • Ferket PR, Santos AA Jr, Oviedo-Rondon EO (2005) Dietary factors that affect gut health and pathogen colonization. In: Proceedings of 32nd annual Carolina poultry nutrition conference, Research Triangle Park, NC, p 22

    Google Scholar 

  • Foligné B, Peys E, Vandenkerckhove J et al (2012) Spores from two distinct colony types of the strain Bacillus subtilis PB6 substantiate anti-inflammatory probiotic effects in mice. Clin Nutr 31:987–994

    PubMed  Google Scholar 

  • Frese SA, Parker K, Calvert CC, Mills DA (2015) Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3:28. https://doi.org/10.1186/s40168-015-0091-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukata T, Sasai K, Miyamoto T et al (1999) Inhibitory effects of competitive exclusion and fructooligosaccharide, singly and in combination, on Salmonella colonization of chicks. J Food Prot 62(3):229–233

    CAS  PubMed  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    CAS  PubMed  Google Scholar 

  • Fuller R (1992) The effect of probiotics on the gut micro-ecology of farm animals. In: The lactic acid bacteria, vol 1. Springer, Boston, MA, pp 171–192

    Google Scholar 

  • Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:S15–S28

    PubMed  Google Scholar 

  • Garcia-Mazcorro JF, Lanerie DJ, Dowd SE et al (2011) Effect of a multi-species synbiotic formulation on fecal bacterial microbiota of healthy cats and dogs as evaluated by pyrosequencing. FEMS Microbiol Ecol 78(3):542–554

    CAS  PubMed  Google Scholar 

  • Geier MS, Torok VA, Allison GE et al (2009) Indigestible carbohydrates alter the intestinal microbiota but do not influence the performance of broiler chickens. J Appl Microbiol 106(5):1540–1548

    CAS  PubMed  Google Scholar 

  • Ghosh S, Mehla RK (2012) Influence of dietary supplementation of prebiotics (mannanoligosaccharide) on the performance of crossbred calves. Trop Anim Health Prod 44:617–622

    PubMed  Google Scholar 

  • Gibson GR (1999) Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J Nutr 129(7):1438S–1441S

    CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Gibson GR, Probert HM, Van Loo J et al (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275

    CAS  PubMed  Google Scholar 

  • Gibson GR, Scott KP, Rastall RA et al (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7(1):1–19

    Google Scholar 

  • Gibson GR, Hutkins R, Sanders ME et al (2017) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502

    Google Scholar 

  • Gil de los Santos JR, Storch OB, Fernandes CG et al (2012) Evaluation in broilers of the probiotic properties of Pichia pastoris and a recombinant P. pastoris containing the Clostridium perfringens alpha toxin gene. Vet Microbiol 156:448–451

    Google Scholar 

  • Goncalves AT, Gallardo-Escarate C (2017) Microbiome dynamic modulation through functional diets based on pre- and probiotics (mannan-oligosaccharides and Saccharomyces cerevisiae) in juvenile rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 122:1333–1347

    CAS  PubMed  Google Scholar 

  • Gresse R, Chaucheyras-Durand F, Fleury MA et al (2017) Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol 25(10):851–873

    CAS  PubMed  Google Scholar 

  • Guarner F (2007) Prebiotics in inflammatory bowel diseases. Br J Nutr 98(Suppl 1):S85–S89

    CAS  PubMed  Google Scholar 

  • Guillot JF (2003) Probiotic feed additives. J Vet Pharmacol Ther 26(Suppl 1):52–55

    Google Scholar 

  • Haghighi HR, Gong J, Gyles CL et al (2006) Probiotics stimulate production of natural antibodies in chickens. Clin Vaccine Immunol 13(9):975–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy GA, Sieg S, Rodriguez B et al (2013) Interferon-α is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLoS One 8(2):e56527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havenaar R, Ten Brink B, Huis JH (1992) Selection of strains for probiotic use. In: Probiotics. Springer, Dordrecht, pp 209–224

    Google Scholar 

  • Hetland H, Svihus B, Choct M (2004) Role of insoluble non-starch polysaccharides in poultry nutrition. Worlds Poult Sci J 60:415–422

    Google Scholar 

  • Higgins SE, Higgins JP, Wolfenden AD et al (2008) Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella enteritidis in neonatal broiler chicks. Poult Sci 87:27–31

    CAS  PubMed  Google Scholar 

  • Higgins SE, Wolfenden AD, Tellez G et al (2011) Transcriptional profiling of cecal gene expression in probiotic- and Salmonella-challenged neonatal chicks. Poult Sci 90:901–913

    CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Khalili M, Rostami HK et al (2013) Dietary galactooligosaccharide affects intestinal microbiota, stress resistance, and performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol 35:1416–1420

    CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Soleimani N, Ringø E (2014) Effects of dietary fructo-oligosaccharide supplementation on the growth performance, haemato-immunological parameters, gut microbiota and stress resistance of common carp (Cyprinus carpio) fry. Br J Nutr 112:1296–1302

    CAS  PubMed  Google Scholar 

  • Huyben D, Sun L, Moccia R et al (2018) Dietary live yeast and increased water temperature influence the gut microbiota of rainbow trout. J Appl Microbiol 124:1377–1392

    CAS  PubMed  Google Scholar 

  • Huyghebaert G, Ducatelle R, Van Immerseel F (2011) An update on alternatives to antimicrobial growth promoters for broilers. Vet J 187:182–188

    CAS  PubMed  Google Scholar 

  • Iji PA, Tivey DR (1998) Natural and synthetic oligosaccharides in broiler chicken diets. Worlds Poult Sci J 54(2):129–143

    Google Scholar 

  • Jensen BB (1998) The impact of feed additives on the microbial ecology of the gut in young pigs. J Anim Sci 7:45–64

    Google Scholar 

  • Joerger RD, Ganguly A (2017) Current status of the preharvest application of pro- and prebiotics to farm animals to enhance the microbial safety of animal products. Microbiol Spectr 5(1). https://doi.org/10.1128/microbiolspec.PFS-0012-2016

  • Jouany JP, Gobert J, Medina B et al (2008) Effect of live yeast culture supplementation on apparent digestibility and rate of passage in horses fed a high-fiber or high-starch diet. J Anim Sci 86(2):339–347

    CAS  PubMed  Google Scholar 

  • Julien C, Marden JP, Auclair E et al (2015) Interaction between live yeast and dietary rumen degradable protein level: effects on diet utilization in early-lactating dairy cows. Agric Sci 6:1–13

    CAS  Google Scholar 

  • Kabir SM (2009) The role of probiotics in the poultry industry. Int J Mol Sci 10(8):3351–3546

    Google Scholar 

  • Kalavathy R, Abdullah N, Jalaludin S et al (2003) Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Br Poult Sci 44(1):139–144

    CAS  PubMed  Google Scholar 

  • Kamada N, Seo SU, Chen GY, Nuñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    CAS  PubMed  Google Scholar 

  • Kanakupt K, Vester Boler BM, Dunsford BR et al (2011) Effects of shortchain fructooligosaccharides and galactooligosaccharides, individually and in combination, on nutrient digestibility, fecal fermentative metabolite concentrations, and large bowel microbial ecology of healthy adult cats. J Anim Sci 89:1376–1384

    CAS  PubMed  Google Scholar 

  • Kenny M, Smidt H, Mengheri E et al (2011) Probiotics – do they have a role in the pig industry? Animal 5:462–470

    CAS  PubMed  Google Scholar 

  • Kerr AK, Farrar AM, Waddell LA et al (2013) A systematic review-meta-analysis and meta-regression on the effect of selected competitive exclusion products on Salmonella spp. prevalence and concentration in broiler chickens. Prev Vet Med 111:112–125

    PubMed  Google Scholar 

  • Khan N, Vidyarthi A, Pahari S et al (2016) Signaling through NOD-2 and TLR-4 bolsters the T cell priming capability of dendritic cells by inducing autophagy. Sci Rep 6:19084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolida S, Gibson GR (2011) Synbiotics in health and disease. Annu Rev Food Sci Technol 2:373–393

    PubMed  Google Scholar 

  • Konstantinov SR, Smidt H, De Vos WM et al (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA 105(49):19474–19479

    CAS  PubMed  Google Scholar 

  • Kyu Song S, Ram Beck B, Kim D et al (2014) Prebiotics as immunostimulants in aquaculture: a review. Fish Shellfish Immunol 40:40–48

    Google Scholar 

  • La Ragione RM, Narbad A, Gasson MJ et al (2004) In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusión agent against bacterial pathogens in poultry. Lett Appl Microbiol 38:197–205

    PubMed  Google Scholar 

  • Lallès J-P, Bosi P, Smidt H, Stokes C (2007) Weaning – a challenge to gut physiologists. Livestock Sci 108(1–3):82

    Google Scholar 

  • Lascano GJ, Zanton GI, Heinrichs AJ (2009) Concentrate levels and Saccharomyces cerevisiae affect rumen fluid-associated bacteria numbers in dairy heifers. Livest Sci 126:189–194

    Google Scholar 

  • Lee W-H, Pathanibud P, Quarterman J et al (2012) Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactone, using engineered Escherichia coli. Microb Cell Factories 11:48. https://doi.org/10.1186/1475-2859-11-48

    Article  CAS  Google Scholar 

  • Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Burr GS, Gatlin DM et al (2007) Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of Pacific white shrimp. Litopenaeus vannamei, cultured in a recirculating system. J Nutr 137:2763–2768

    CAS  PubMed  Google Scholar 

  • Lin H-L, Shiu Y-L, Chiu C-S et al (2017) Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish Shellfish Immunol 60:474–482

    CAS  PubMed  Google Scholar 

  • Lindström A, Korpela S, Fries L (2008) Horizontal transmission of Paenibacillus larvae spores between honey bee (Apis mellifera) colonies through robbing. Apidologie 39:515–522

    Google Scholar 

  • Liu P, Piao XS, Kim SW et al (2008) Effects of chito-oligosaccharide supplementation on the growth performance, nutrient digestibility, intestinal morphology, and fecal shedding of Escherichia coli and Lactobacillus in weaning pigs. J Anim Sci 86:2609–2618

    CAS  PubMed  Google Scholar 

  • Lizardo R, Nofrarias M, Guinvarch J et al (2008) Influence de l’incorporation de levures Saccharomyces cerevisiae ou de leur parois dans l’aliment sur la digestión et les performances zootechniques des porcelets en post-sevrage. J Recher Porc 40:183–190

    Google Scholar 

  • Lutful Kabir SM (2010) Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int J Environ Res Public Health 7(1):89–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macfarlane SMGT, Macfarlane GT, Cummings JT (2006) Prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24(5):701–714

    CAS  PubMed  Google Scholar 

  • Mancabelli L, Ferrario C, Milani C (2016) Insights into the biodiversity of the gut microbiota of broiler chickens. Environ Microbiol 18(12):4727–4738

    CAS  PubMed  Google Scholar 

  • Manning TS, Gibson GR (2004) Microbial-gut interactions in health and diasease. Prebiotics. Best Pract Res Clin Gastroenterol 18(2):287–298

    PubMed  Google Scholar 

  • Marden JP, Julien C, Monteils V et al (2008) How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? J Dairy Sci 91(9):3528–3535

    CAS  PubMed  Google Scholar 

  • Marden J-P, Bayourthe C, Auclair E et al (2013) A bioenergetic-redox approach to the effect of live yeast on ruminal pH during induced acidosis in dairy cow. Am J Anal Chem 4:60–68

    Google Scholar 

  • Mead GC (1989) Microbes of the avian cecum: types present and substrates utilized. J Exp Zool Suppl 3:48–54

    CAS  PubMed  Google Scholar 

  • Meimandipour A, Shuhaimi M, Hair-Bejo M et al (2009) In vitro fermentation of broiler cecal content: the role of lactobacilli and pH value on the composition of microbiota and end products fermentation. J Appl Microbiol 49(4):415–420

    CAS  Google Scholar 

  • Metzler BU, Mosenthin R (2008) A review of intreractions between dietary fiber and the gastrointestinal microbiota and their consequences on intestinal phosporous metabolism in growing pigs. Asian Aust J Anim Sci 21(4):603–615

    CAS  Google Scholar 

  • Mitsuoka T, Hidaka H, Eida T (1987) Effect of fructo-oligosaccharides on intestinal microflora. Nahrung 31(5–6):427–436

    CAS  PubMed  Google Scholar 

  • Modesto M, Steanini I, D’Aimmo MR et al (2011) Strategies to augment non-immune system based defence mechanisms against gastrointestinal diseases in pigs. NJAS – Wageningen J Life Sci 58(3–4):149–156

    Google Scholar 

  • Mookiah S, Sieo CC, Ramasamy K et al (2014) Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. J Sci Food Agric 94:341–348

    CAS  PubMed  Google Scholar 

  • Morales-López R, Auclair E, Garcia F et al (2009) Use of yeast cell walls; β-1, 3/1, 6-glucans; and mannoproteins in broiler chicken diets. Poult Sci 88:601–607

    PubMed  Google Scholar 

  • Morgan LM, Coverdale JA, Froetschel MA et al (2007) Effect of yeast culture supplementation on digestibility of varying forage quality in mature horses. J Equine Vet Sci 27:260–265

    Google Scholar 

  • Mountzouris KC, Tsistsikos P, Kalamara E et al (2007) Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulting cecal microflora composition and metabolic activities. Poult Sci 86:309–317

    CAS  PubMed  Google Scholar 

  • Nagpal R, Kaur A (2011) Synbiotic effects of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol Food Nutr 50(1):63–68

    PubMed  Google Scholar 

  • Nakphaichit M, Thanomwongwattana S, Phraephaisarn C et al (2011) The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poult Sci 90(12):2753–2765

    CAS  PubMed  Google Scholar 

  • Niu Q, Li P, Hao S, Zhang Y, Kim SW, Li H, Ma X, Gao S, He L, Wu WJ, Huang X, Hua J, Zhou B, Huang R (2015) Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci Rep 5:9938. https://doi.org/10.1038/srep09938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak M, Vetvicka V (2008) Beta-glucans, history, and the present: immunomodulatory aspects and mechanisms of action. J Immunotoxicol 5:47–57

    CAS  PubMed  Google Scholar 

  • Nurmi E, Rantala M (1973) New aspects of Salmonella infection in broiler production. Nature (Lond) 241(5386):210–211

    CAS  Google Scholar 

  • O’Hara AM, Shanahan F (2007) Gut microbiota: mining for therapeutic potential. Clin Gastroenterol Hepatol 5:274–284

    PubMed  Google Scholar 

  • Oakley BB, Morales CA, Line J et al (2013) The poultry-associated microbiome: network analysis and farm-to-fork characterizations. PLoS One 8(2):e57190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parsley LC, Consuegra EJ, Thomas SJ et al (2010) Census of the viral metagenome within an activated sludge microbial assemblage. Appl Environ Microbiol 76:2673–2677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel S, Goyal A (2012) The current trends and future perspectives of prebiotics research: a review. 3 Biotech 2(1):1–15

    PubMed  Google Scholar 

  • Patterson JA, Burkholder KM (2003) Applications of prebiotics and probiotics in poultry production. Poult Sci 82:627–631

    CAS  PubMed  Google Scholar 

  • Pereira Soares M, Cristina Oliveira F et al (2018) Glucan-MOS® improved growth and innate immunity in pacu stressed and experimentally infected with Aeromonas hydrophila. Fish Shellfish Immunol 73:133–140

    Google Scholar 

  • Pieters N, Brunt J, Austin B et al (2008) Efficacy of in-feed probiotics against Aeromonas bestiarum and Ichthyophthirius multifiliis skin infections in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 105(3):723–732

    CAS  PubMed  Google Scholar 

  • Pineiro M, Asp N-G, Reid G et al (2008) FAO technical meeting on prebiotics. J Clin Gastroenterol 42(Suppl 3 Pt 2):S156–S159

    PubMed  Google Scholar 

  • Pinloche E, McEwan N, Marden J-P et al (2013) The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS One 8(7):e67824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinpimai K, Rodkhum C, Chansue N et al (2015) The study on the candidate probiotic properties of encapsulated yeast, Saccharomyces cerevisiae JCM7255, in Nile tilapia (Oreochromis niloticus). Res Vet Sci 102:103–111

    CAS  PubMed  Google Scholar 

  • Pourabedin M, Zhao X (2015) Prebiotics and gut microbiota in chickens. FEMS Microbiol Lett 362:fnv122

    PubMed  Google Scholar 

  • Pridmore RD, Berger B, Desiere F et al (2004) The genome sequence of the probiotic intestinal bacaterium Lactobacillus johnsonni NCC 533. Proc Natl Acad Sci USA 101:2512–2517

    CAS  PubMed  Google Scholar 

  • Qiu R, Croom J, Ali RA et al (2012) Direct fed microbial supplementation repartitions host energy to the immune system. J Anim Sci 90:2639–2651

    CAS  PubMed  Google Scholar 

  • Quigley JD, Drewry JJ, Murray LM et al (1997) Body weight gain, feed efficiency, and fecal scores of dairy calves in response to galactosyl-lactose or antibiotics in milk replacers. J Dairy Sci 80:1751–1754

    CAS  PubMed  Google Scholar 

  • Redfern A, Suchodolski J, Jergens A (2017) Role of the gastrointestinal microbiota in small animal health and disease. Vet Rec 181(14):370

    PubMed  Google Scholar 

  • Rehman H, Vahjen W, Kohl-Parisini A et al (2009) Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. Worlds Poult Sci J 65(1):75–90

    Google Scholar 

  • Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    PubMed  Google Scholar 

  • Respondek F, Swanson KS, Belsito KR et al (2008) Short-chain fructooligosaccharides influence insulin sensitivity and gene expression of fat tissue in obese dogs. J Nutr 138:1712–1718

    CAS  PubMed  Google Scholar 

  • Respondek F, Myers K, Smith TL et al (2011) Dietary supplementation with short-chain fructooligosaccharides improves insulin sensitivity in obese horses. J Anim Sci 89:77–83

    CAS  PubMed  Google Scholar 

  • Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830–837

    Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S63

    CAS  PubMed  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212

    CAS  PubMed  Google Scholar 

  • Roodposhti PM, Dabiri N (2012) Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian-Australas J Anim Sci 25:1255–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell JB (2002) Rumen microbiology and its role in ruminant nutrition. Cornell University, Ithaca, NY

    Google Scholar 

  • Saad N, Delattre C, Urdaci M et al (2013) An overview of the last advances in probiotic and prebiotic field. LWT – Food Sci Technol 50:1–16

    CAS  Google Scholar 

  • Salvati GGS, Morais Junior NN, Melo ACS et al (2015) Response of lactating cows to live yeast supplementation during summer. J Dairy Sci 98(6):4062–4073

    CAS  PubMed  Google Scholar 

  • Sancak AA, Rutgers HC, Hart CA et al (2004) Prevalence of enteropathic Escherichia coli in dogs with acute and chronic diarrhoea. Vet Rec 154:101–106

    CAS  PubMed  Google Scholar 

  • Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633

    PubMed  Google Scholar 

  • Seal BS, Lillehoj HS, Donovan DM et al (2013) Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim Health Res Rev 14(1):78–87

    PubMed  Google Scholar 

  • Seepersadsingh N, Adesiyun AA, Seebaransingh R (2004) Prevalence and antimicrobial resistance of Salmonella spp. in non-diarrhoeic dogs in Trinidad. J Vet Med B Infect Dis Vet Public Health 51:337–342

    CAS  PubMed  Google Scholar 

  • Sekirov I, Russell SL, Antunes CM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    CAS  PubMed  Google Scholar 

  • Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17(5):741–754

    CAS  PubMed  Google Scholar 

  • Seth A, Yan F, Polk DB et al (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC-and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 294:1060–1069

    Google Scholar 

  • Shakouri MD, Iji PA, Mikkelsen LL et al (2009) Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. J Anim Physiol Anim Nutr 93:647–658

    CAS  Google Scholar 

  • Smith JM (2014) A review of avian probiotics. J Avian Med Surg 28(2):87–94

    PubMed  Google Scholar 

  • Sparkes AH, Papasouliotis K, Sunvold G et al (1998a) Bacterial flora in the duodenum of healthy cats, and effect of dietary supplementation with fructo-oligosaccharides. Am J Vet Res 59:431–435

    CAS  PubMed  Google Scholar 

  • Sparkes AH, Papasouliotis K, Sunvold G et al (1998b) Effect of dietary supplementation with fructo-oligosaccharides on fecal flora of healthy cats. Am J Vet Res 59:436–440

    CAS  PubMed  Google Scholar 

  • Spring P, Wenk C, Dawson KA et al (2000) The effect of dietary mannonoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella-challenged broiler chicks. Poult Sci 79:205–211

    CAS  PubMed  Google Scholar 

  • St. Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86(E Suppl):E52–E77

    Google Scholar 

  • Stanley D, Denman SE, Hughes RJ et al (2012) Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl Microbiol Biotechnol 96:1361–1369

    CAS  PubMed  Google Scholar 

  • Stanley D, Hughes RJ, Moore RJ (2014) Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol 98(10):4301–4310

    CAS  PubMed  Google Scholar 

  • Stern NJ, Svetoch EA, Eruslanov BV et al (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Chemother 50(9):3111–3116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78:393–427

    CAS  PubMed  Google Scholar 

  • Syngai GG, Gopi R, Bharali R et al (2016) Probiotics: the versatile functional food ingredients. J Food Sci Technol 53:921–933

    PubMed  Google Scholar 

  • Timmerman HM, Veldman A, Van den Elsen E et al (2006) Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poult Sci 85(8):1383–1388

    CAS  PubMed  Google Scholar 

  • Torok VA, Ophel-Keller K, Loo M et al (2008) Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl Environ Microbiol 74(3):783–791

    CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M et al (2007) Human microbiome project. Nature 449:804–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Craeyveld V, Holopainen U, Selinheimo E et al (2009) Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. J Agric Food Chem 57:8467–8473

    PubMed  Google Scholar 

  • Van Haandel B (2016) Microbiome: its effect on health and growth. All About Feed 24(7):6–7

    Google Scholar 

  • Van Immerseel F, Cauwerts K, Devriese LA et al (2002) Feed additives to control Salmonella in poultry. Worlds Poult Sci J 58(4):501–513

    Google Scholar 

  • Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14:1585–1596

    PubMed  Google Scholar 

  • Vasquez A, Forsgren E, Fries I et al (2012) Symbionts as major modulators of insect health: lactic acid bacteria in honeybee. PLoS One 7:e33188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verbrugghe A, Hesta M, Gommeren K et al (2009) Oligofructose and inulin modulate glucose and amino acid metabolism through propionate production in normal-weight and obese cats. J Nutr 102:694–702

    CAS  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P et al (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley NC, Dinan TG, Ross P et al (2017) The microbiota-gut-brain axis as a key regulator of neural function and the stress response: implications for human and animal health. J Anim Sci 95:3225–3246

    CAS  PubMed  Google Scholar 

  • Willard MD, Simpson RB, Cohen ND et al (2000) Effects of dietary fructooligosaccharide on selected bacterial populations in feces of dogs. Am J Vet Res 61:820–825

    CAS  PubMed  Google Scholar 

  • Williams BA, Verstegen MWA, Tamminga S (2001) Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev 14:207–228

    CAS  PubMed  Google Scholar 

  • Xu ZR, Hu CH, Xia MS et al (2003) Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult Sci 82(6):1030–1036

    CAS  PubMed  Google Scholar 

  • Xu Q, Chao Y, Wan Q (2009) Health benefit application of functional oligosaccharides. Carbohydr Polym 77:435–441

    CAS  Google Scholar 

  • Yajima T, Inoue R, Yajima M et al (2011) The G-protein in colesterol-rich membrane microdomains mediates mucosal sensing of short-chain fatty acids and secretory response in rat colon. Acta Physiol (Oxf) 203:381–389

    CAS  Google Scholar 

  • Yaqoob P (2014) Ageing, immunity and influenza: a role for probiotics? Proc Nutr Soc 73(2):309–317

    PubMed  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeoman CJ, Chia N, Jeraldo P et al (2012) The microbiome of the chicken gastrointestinal tract. Anim Health Res Rev 13(1):89–99

    PubMed  Google Scholar 

  • Youssef IMI, Kamphues J (2018) Fermentation of lignocellulose ingredients in vivo and in vitro via using fecal and caecal inoculums of monogastric animals (swine/turkeys). BJBAS 7:407–413

    Google Scholar 

  • Zulkifli I, Abdullah N, Azrin NM et al (2000) Growth performance and immune response of two commercial broiler strains fed diets containing Lactobacillus cultures and oxytetracycline under heat stress conditions. Br Poult Sci 41(5):593–597

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Project S2013/ABI-2728 (ALIBIRD-CM Program) from Comunidad de Madrid, and by Project Ref. RTA2015-00010-C03-03 from Ministerio de Economía, Industria y Competitividad, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Anadón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anadón, A., Ares, I., Martínez-Larrañaga, M.R., Martínez, M.A. (2019). Prebiotics and Probiotics in Feed and Animal Health. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_19

Download citation

Publish with us

Policies and ethics