Skip to main content

Resveratrol: Biological Activities and Potential Use in Health and Disease

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

Resveratrol (RV) is a polyphenol non-flavonoid compound present in strongly pigmented vegetables and fresh fruits as well as dried nuts such as peanuts. High concentrations of this natural compound were found, in the modern occidental world, in the peel of the berries of the red grape Vitis vinifera, but usage of this natural drug in popular medicine has been documented much earlier. Resveratrol exhibits diverse biological activities such as antitumor, antioxidant, antiviral, and phytoestrogenic. In particular, as the work reported from our laboratories, the compound shows an inhibitory effect on murine polyomavirus DNA replication, while at higher concentrations, RV shows a significant cytotoxic effect. This complex dose-dependent behavior is not intrinsic to the drug. Other natural substances behave in a similar way, curcumin and a semi-purified fraction of the whole neem oil being two different examples. Most likely, the administration of RV to cultured cells alters the permeability and fluidity of the cell membrane. Also, data presented in literature ascribe to RV an antiproliferative action, thus rendering this drug a good candidate for the control of neoplastic growth. The potential usage of RV both in human and veterinary medicine is also examined in this review.

“Gianfranco Risuleo” is on retirement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad N, Adhami VM, Afaq F et al (2001) Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res 7:1466–1473

    CAS  PubMed  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    CAS  PubMed  Google Scholar 

  • Aiello C, Berardi V, Ricci F, Risuleo G (2011) Biological properties of a methanolic extract of neem oil, a natural oil from the seeds of the Neem tree (Azadirachta indica var. A. Juss). In: Preedy VR, Watson RR, Patel VB (eds) Nuts & seeds in health and disease prevention, 1st edn. Academic Press is an imprint of Elsevier, London, Burlington, San Diego, pp 813–821. ISBN: 978-0-12-375688-6

    Google Scholar 

  • Aluyen JK, Ton QN, Tran T et al (2012) Resveratrol: potential as anticancer agent. J Diet Suppl 9(1):45–56

    CAS  PubMed  Google Scholar 

  • Amro MS, Teoh SL, Norzana AG et al (2018) The potential role of herbal products in the treatment of Parkinson’s disease. Clin Ter 169(1):e23–e33

    CAS  PubMed  Google Scholar 

  • Ansari KA, Vavia PR, Trotta F et al (2011) Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS Pharm Sci Technol 12(1):279–286

    CAS  Google Scholar 

  • Araim O, Ballantyne J, Waterhouse AL et al (2002) Inhibition of vascular smooth muscle cell proliferation with red wine and red wine polyphenols. J Vasc Surg 35(6):1226–1232

    PubMed  Google Scholar 

  • Asensi M, Medina I, Ortega A et al (2002) Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic Biol Med 33(3):387–398

    CAS  PubMed  Google Scholar 

  • Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513:481–483

    CAS  PubMed  Google Scholar 

  • Berardi V, Ricci F, Castelli M, Galati G, Risuleo G (2009) Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use. J Exp Clin Cancer Res 28:96–105

    PubMed  PubMed Central  Google Scholar 

  • Bhat P, Kriel J, Shubha Priya B et al (2018) Modulating autophagy in cancer therapy: advancements and challenges for cancer cell death sensitization. Biochem Pharmacol 147:170–182

    CAS  PubMed  Google Scholar 

  • Bird JK, Raederstorff D, Weber P et al (2015) Cardiovascular and antiobesity effects of resveratrol mediated through the gut microbiota. Adv Nutr 8:839–849

    Google Scholar 

  • Bonincontro A, Risuleo G (2015) Electrorotation: a spectroscopic imaging approach to study the alterations of the cytoplasmic membrane. Adv Mol Imaging 5:1–15

    Google Scholar 

  • Bonincontro A, Domenici F, Milardi GL, Risuleo G (2018) Differential dielectric behavior of the plasma membrane in mouse fibroblasts and human embryo kidney cells. Intl J Sci Res 7:68–71

    Google Scholar 

  • Bourassa P (2010) Resveratrol, genistein, and curcumin bind bovine serum albumin. J Phys Chem 114:3348–3354

    CAS  Google Scholar 

  • Burow M, Halkier BA (2017) How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as case study. Curr Opin Plant Biol 38:142–147

    CAS  PubMed  Google Scholar 

  • Cao W, Dou Y, Li A (2018) Resveratrol boosts cognitive function by targeting SIRT1. Neurochem Res 43(9):1705–1713. https://doi.org/10.1007/s11064-018-2586-8

    Article  CAS  PubMed  Google Scholar 

  • Castro OW, Upadhya D, Kodali M et al (2017) Resveratrol for easing status epilepticus induced brain injury, inflammation, epileptogenesis, and cognitive and memory dysfunction-are we there yet? Front Neurol 13(8):603

    Google Scholar 

  • Chedea VS, Vicaş SI, Sticozzi C et al (2011) Resveratrol: from diet to topical usage. Food Funct 8:3879–3892

    Google Scholar 

  • Chen S, Xiao X, Feng X et al (2011) Resveratrol induces Sirt1-dependent apoptosis in 3T3-L1 preadipocytes by activating AMPK and suppressing AKT activity and survivin expression. J Nutr Biochem 23(9):1100–1112

    PubMed  Google Scholar 

  • Cho MH, Lee SW (2015) Phenolic phytoalexins in rice: biological functions and biosynthesis. Int J Mol Sci 16(12):29120–29133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cichewicz RH, Kouzi ESA (2002) Resveratrol oligomers: structure, chemistry, and biological activity. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 26. Elsevier, Amsterdam, pp 507–579

    Google Scholar 

  • Colin D, Limagne E, Jeanningros-Arnaud S et al (2011) Endocytosis of resveratrol via lipid rafts and activation of downstream signaling pathways in cancer cells. Cancer Prev Res (Phila) 4(7):1095–1106. https://doi.org/10.1158/1940-6207.CAPR-10-0274

    Article  CAS  Google Scholar 

  • Crooker K, Aliani R, Ananth M (2018) A review of promising natural chemopreventive agents for head and neck cancer. Cancer Prev Res (Phila) 11(8):441–450. https://doi.org/10.1158/1940-6207.CAPR-17-0419

    Article  Google Scholar 

  • De la Lastra CA, Villegas I (2007) Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 35(5):1156–1160

    PubMed  Google Scholar 

  • De Leo A, Arena G, Lacanna E et al (2012) Resveratrol inhibits Epstein Barr Virus lytic cycle in Burkitt’s lymphoma cells by affecting multiple molecular targets. Antivir Res 96(2):196–202

    PubMed  Google Scholar 

  • Delmas D, Solary E, Latruffe N (2011) Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr Med Chem 18(8):1100–1121

    CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Docherty JJ, Fu MM, Stiffler BS et al (1999) Resveratrol inhibition of herpes simplex virus replication. Antivir Res 43:145–155

    CAS  PubMed  Google Scholar 

  • Docherty JJ, Fu MM, Hah JM et al (2005) Effect of resveratrol on herpes simplex virus vaginal infection in the mouse. Antivir Res 67:155–162

    CAS  PubMed  Google Scholar 

  • Docherty JJ, Sweet TJ, Bailey E et al (2006) Resveratrol inhibition of varicella-zoster virus replication in vitro. Antivir Res 72:171–177

    CAS  PubMed  Google Scholar 

  • Echeverri F, Torres F, Quinones W et al (1997) Danielone, a phytoalexin from papaya fruit. Phytochemistry 44(2):255–256

    CAS  PubMed  Google Scholar 

  • Elshaer M, Chen Y, Wang XJ et al (2018) Resveratrol: an overview of its anti-cancer mechanisms. Life Sci 207:340–349

    CAS  PubMed  Google Scholar 

  • Espinoza JL, Kurokawa Y, Takami A (2018) Rationale for assessing the therapeutic potential of resveratrol in hematological malignancies. Blood Rev S0268–960X(17):30124–30128

    Google Scholar 

  • Fan Y, Chiu JF, Liu J (2018) Resveratrol induces autophagy-dependent apoptosis in HL-60 cells. BMC Cancer 18(1):581

    PubMed  PubMed Central  Google Scholar 

  • Farris P, Krutmann J, Li YH (2013) Resveratrol: a unique antioxidant offering a multi-mechanistic approach for treating aging skin. J Drugs Dermatol 12(12):1389–1394

    CAS  PubMed  Google Scholar 

  • Favaron F, Lucchetta M et al (2009) The role of grape polyphenols on trans-resveratrol activity against Botrytis cinerea and of fungal laccase on the solubility of putative grape PR proteins. J Plant Pathol 91(3):579–588

    CAS  Google Scholar 

  • Fogacci F, Tocci G, Presta V et al (2018) Effect of resveratrol on blood pressure: a systematic review and meta-analysis of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr 58(2):1–14

    Google Scholar 

  • Ganesan P, Choi DK (2016) Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 11:1987–2007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J, Ausbel FM (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. PNAS 91:8955–8959

    CAS  PubMed  Google Scholar 

  • Gregory D, Hargett D, Holmes D et al (2004) Efficient replication by herpes simplex virus type 1 involves activation of the IFkappaB kinase-IkappaB-p65 pathway. J Virol 78(24):13582–13590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Großkinsky DK, van der Graaff E, Roitsch T (2012) Phytoalexin transgenics in crop protection—fairy tale with a happy end? Plant Sci 195:54–70

    PubMed  Google Scholar 

  • Harborne JB (1999) The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol 27(4):335–367

    CAS  Google Scholar 

  • Hart JH, Hillis WE (1974) Inhibition of wood-rotting fungi by stilbenes and other polyphenols in Eucalyptus sideroxylon. Phytopathology 64:939–948

    CAS  Google Scholar 

  • Hasima N, Ozpolat B (2014) Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 5:e1509. https://doi.org/10.1038/cddis.2014.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausenblas HA, Schoulda JA, Smoliga JM et al (2014) Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus-systematic review and meta-analysis. Mol Nutr Food Res 59(1):147–159

    PubMed  Google Scholar 

  • He X, Wang Y, Zhu J et al (2011) Resveratrol enhances the anti-tumor activity of the mTOR inhibitor rapamycin in multiple breast cancer cell lines mainly by suppressing rapamycin-induced AKT signaling. Cancer Lett 301(2):168–176

    CAS  PubMed  Google Scholar 

  • Huminiecki L, Horbańczuk J (2018) The functional genomic studies of resveratrol in respect to its anti-cancer effects. Biotechnol Adv 36(6):1699–1708

    CAS  PubMed  Google Scholar 

  • Ingólfsson HI, Thakur P, Herold KF et al (2014) Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem Biol 9:1788–1798

    PubMed  PubMed Central  Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bessis R et al (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    CAS  PubMed  Google Scholar 

  • Jiang J (2008) Design, synthesis and spectroscopic studies of resveratrol aliphatic acid ligands of human serum albumin. Bioorg Med Chem 16:6406–6414

    CAS  PubMed  Google Scholar 

  • Kou X, Chen N (2017) Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer’s disease. Nutrients 9(9):E927. https://doi.org/10.3390/nu9090927

    Article  CAS  PubMed  Google Scholar 

  • Lamuela-Raventos RM, Romero-Perez AI, Waterhouse AL et al (1995) Direct HPLC analysis of cis- and trans-resveratrol and piceid isomers in Spanish red Vitis vinifera wines. J Agric Food Chem 43(2):281–283

    CAS  Google Scholar 

  • Lange KW, Li S (2018) Resveratrol, pterostilbene, and dementia. Biofactors 44(1):83–90

    CAS  PubMed  Google Scholar 

  • Lee RHC, Lee MHH, Wu CYC et al (2018) Cerebral ischemia and neuroregeneration. Neural Regen Res 13(3):373–385

    PubMed  PubMed Central  Google Scholar 

  • Liao PC, Ng LT, Lin LT et al (2010) Resveratrol arrests cell cycle and induces apoptosis in human hepatocellular carcinoma Huh-7 cells. J Med Food 13(6):1

    Google Scholar 

  • Madhav NV, Shakya AK, Shakya P et al (2009) Orotransmucosal drug delivery systems: a review. J Control Release 140(1):2–11

    CAS  PubMed  Google Scholar 

  • Matos RS, Baroncini LA, Précoma LB et al (2012) Resveratrol causes antiatherogenic effects in an animal model of atherosclerosis. Arq Bras Cardiol 98(2):136–142

    CAS  PubMed  Google Scholar 

  • Mattetti A, Risuleo G (2014) Apoptosis: a mode of cell death. Biochem Mol Biol 2:34–39

    Google Scholar 

  • Mattivi F, Reniero F, Korhammer S (1995) Isolation, characterization, and evolution in red wine vinification of resveratrol monomers. J Agric Food Chem 43(7):1820–1823

    CAS  Google Scholar 

  • McCubrey JA, Lertpiriyapong K, Steelman LS et al (2017) Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and micro-RNAs. Aging (Albany NY) 9(6):1477–1536

    CAS  Google Scholar 

  • Meyer J, Murray SL, Berger DK (2016) Signals that stop the rot: regulation of secondary metabolite defences in cereals. Physiol Mol Plant Pathol 94:156–166

    CAS  Google Scholar 

  • Molnár J, Engi H, Hohmann J et al (2010) Reversal of multidrug resistance by natural substances from plants. Curr Top Med Chem 10(17):1757–1768

    PubMed  Google Scholar 

  • Oliveira MDM, Varanda CMR, Félix MRF (2016) Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochem Lett 15:152–158

    CAS  Google Scholar 

  • Oliveira ALB, Monteiro VVS, Navegantes-Lima KC et al (2017) Resveratrol role in autoimmune disease-AMini-review. Nutrients 19:E1306

    Google Scholar 

  • Owen HC, Appiah S, Hasan N et al (2017) Phytochemical modulation of apoptosis and autophagy: strategies to overcome chemoresistance in leukemic stem cells in the bone marrow microenvironment. Int Rev Neurobiol 135:249–278

    PubMed  Google Scholar 

  • Palamara AT, Nencioni L, Aquilano K et al (2005) Inhibition of influenza A virus replication by resveratrol. J Infect Dis 191:1719–1729

    CAS  PubMed  Google Scholar 

  • Pallauf K, Rimbach G, Rupp PM et al (2016) Resveratrol and lifespan in model organisms. Curr Med Chem 23(41):4639–4680

    CAS  PubMed  Google Scholar 

  • Perez-Vizcaino F, Fraga CG (2018) Research trends in flavonoids and health. Arch Biochem Biophys 646:107–112

    CAS  PubMed  Google Scholar 

  • Popescu M, Bogdan C, Pintea A et al (2018) Drug Des Devel Ther 12:1985–1996

    PubMed  PubMed Central  Google Scholar 

  • Prokop J, Abrman P, Seligson AL et al (2006) Resveratrol and its glycon piceid are stable polyphenols. J Med Food 9(1):11–14

    CAS  PubMed  Google Scholar 

  • Ricci F, Berardi V, Risuleo G (2009) Differential cytotoxicity of MEX: a component of Neem oil whose action is exerted at the cell membrane level. Molecules 14:122–132

    CAS  Google Scholar 

  • Risuleo G (2016) Resveratrol: multiple activities on the biological functionality of the cell. In: Gupta R (ed) Nutraceuticals: efficacy, safety and toxicity. Elsevier/Academic Press, Amsterdam, pp 453–464

    Google Scholar 

  • Sanchez Maldonado AF, Schieber A, Gänzle MG (2015) Plant defence mechanisms and enzymatic transformation products and their potential applications in food preservation: advantages and limitations. Trends Food Sci Technol 46(1):49–59

    CAS  Google Scholar 

  • Santos Silva M, Barbosa Monteiro Arraes F, de Araújo Campos M et al (2018) Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Sci 270:72–84

    Google Scholar 

  • Sarubbo F, Moranta D, Asensio VJ et al (2017) Effects of resveratrol and other polyphenols on the most common brain age-related diseases. Curr Med Chem 24(38):4245–4266

    CAS  PubMed  Google Scholar 

  • Schröder J (1999) Probing plant polyketide biosynthesis. Nat Struct Biol 6:714–716

    PubMed  Google Scholar 

  • Schröder G, Brown JW, Schröder J et al (1988) Molecular analysis of resveratrol synthase. cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem 172(1):161–169

    PubMed  Google Scholar 

  • Shalini S, Dorstyn L, Dawar S et al (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539

    CAS  PubMed  Google Scholar 

  • Sharan S, Nagar S (2013) Pulmonary metabolism of resveratrol: in vitro and in vivo evidence. Drug Metab Dispos 41(5):1163–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shih C-H, Chu IK, Yip WK et al (2006) Differential expression of two flavonoid 3′-hydroxylase cDNAs involved in biosynthesis of anthocyanin pigments and 3-deoxyanthocyanidin phytoalexins in Sorghum. Plant Cell Physiol 47(10):1412–1419

    CAS  PubMed  Google Scholar 

  • Signorelli P, Ghidoni R (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 16(8):449–466

    CAS  PubMed  Google Scholar 

  • Singh NP, Singh UP, Hegde VL et al (2011) Resveratrol (trans-3,5,4′-trihydroxystilbene) suppresses EL4 tumor growth by induction of apoptosis involving reciprocal regulation of SIRT1 and NF-κB. Mol Nutr Food Res 55(8):1207–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soleas GJ, Diamandis EP, Goldberg DM (1997) Resveratrol: a molecule whose time has come? And gone? Clin Biochem 30:91–113

    CAS  PubMed  Google Scholar 

  • Thomma BP, Nelissen I, Eggermont K et al (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19(2):163–171

    CAS  PubMed  Google Scholar 

  • Tooze J (ed) (1981) Molecular biology of tumor viruses: DNA tumor viruses part 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Treviño-Saldaña N, García-Rivas G (2017) Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals. Oxidative Med Cell Longev:1750306. https://doi.org/10.1155/2017/1750306

    Google Scholar 

  • Tsai HY, Ho CT, Chen YK (2017) Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene. J Food Drug Anal 25(1):134–147

    CAS  PubMed  Google Scholar 

  • Turner RS, Thomas RG, Craft S et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85(16):1383–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah MF, Bhat SH, Hussain E et al (2015) Ascorbic acid in cancer chemoprevention: translational perspectives and efficacy. Curr Drug Targets 13(14):1757–1771

    Google Scholar 

  • Vang O (2015) Resveratrol: challenges in analyzing its biological effects. Ann N Y Acad Sci 1348:161–170

    CAS  PubMed  Google Scholar 

  • Wahl D, Bernier M, Simpson SJ et al (2018) Future directions of resveratrol research. Nutr Health Aging 4(4):287–290

    Google Scholar 

  • Walle T (2011) Bioavailability of resveratrol. Ann N Y Acad Sci 1215:9–15

    CAS  PubMed  Google Scholar 

  • Wang Z, Li W, Meng X, Jia B (2012) Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin Exp Pharmacol Physiol 39(3):227–232

    PubMed  Google Scholar 

  • Whitlock NC, Baek SJ (2012) The anticancer effects of resveratrol: modulation of transcription factors. Nutr Cancer 64(4):493–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Li S, Zhang X et al (2015) Resveratrol, sirtuins, and viruses. J Rev Med Virol 25(6):431–445

    CAS  Google Scholar 

  • Zbikowska HM, Olas B, Wachowicz B et al (1999) Response of blood platelets to resveratrol. Platelets 10:247–252

    CAS  PubMed  Google Scholar 

  • Zhai T, Li S, Hu W et al (2018) Potential micronutrients and phytochemicals against the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nutrients 10(7):E813. https://doi.org/10.3390/nu10070813

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Guo JG, Guo ZH et al (2011) Involvement of p38-p53 signal pathway in resveratrol-induced apoptosis in MCF-7 cells. Yao Xue Xue Bao 46(11):1332–1337

    CAS  PubMed  Google Scholar 

  • Zhang W, Wang X, Chen T (2012) Resveratrol induces apoptosis via a Bak-mediated intrinsic pathway in human lung adenocarcinoma cells. Cell Signal 24(5):1037–1046

    CAS  PubMed  Google Scholar 

  • Zhu X, Wu C, Qiu S et al (2017) Effects of resveratrol on glucose controland insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis. Nutr Metab (Lond) 14:60. https://doi.org/10.1186/s12986-017-0217-z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Risuleo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Risuleo, G., La Mesa, C. (2019). Resveratrol: Biological Activities and Potential Use in Health and Disease. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_15

Download citation

Publish with us

Policies and ethics