Skip to main content

Essential Oils

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

The essential oils (EOs) have been used in humans and animals for several millennia, as they represent an important part of folk medicine for their medicinal properties. EOs are a very heterogeneous group of complex mixtures of secondary plant metabolites. The nature of an EO varies from plant to plant, species to species, and within botanical families. By now, more than 3000 varieties of volatile aromatic compounds have been identified. Hundreds of chemical compounds have been identified in the essential oils (EOs) of some plants, with properties such as antioxidative, anti-inflammatory, antibacterial, antiviral, antifungal, antiseptic, antimycotic, antitumor, antispasmodic, immunostimulating, etc. In addition to aromatherapy, they are either ingested or topically applied for conditions such as pain, arthritis, bruises, scratches, scars, flea control, and many others. This chapter describes EOs of plant and non-plant origins, their active constituents, and clinical applications in animal health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelwahab SI, Mariod AA, Taha MME et al (2017) Chemical composition and antioxidant properties of the essential oil of Cinnamomum altissimum Kosterm. (Lauraceae). Arab J Chem 10:131–135

    CAS  Google Scholar 

  • Abdulazeez MA (2016) In: Preedy VR (ed) Essential oils in food preservation, flavor and safety. Elsevier, Amsterdam, pp 509–516

    Google Scholar 

  • Adaszynska-Skwirzynska M, Szczerbinska D (2017) The antimicrobial activity of lavender essential oil (Lavandula angustifolia) and its influence on the production performance of broiler chickens. J Anim Physiol Anim Nutr 102:1020–1025

    Google Scholar 

  • Ahmad A, van Vuuren S, Viljoen A (2014) Unravelling the complex antimicrobial interactions of essential oils—the case of Thymus vulgaris (Thyme). Molecules 19:2896–2910

    PubMed  PubMed Central  Google Scholar 

  • Aidi WW, Mhamdi B, Sriti J et al (2010) Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem Toxicol 48:1362–1370

    Google Scholar 

  • Al-Asmari AK, Athar MT, Al-Faraidy AA et al (2017) Chemical composition of essential oil of Thymus vulgaris collected from Saudi Arabian market. Asian Pac J Trop Biomed 7(2):147–150

    Google Scholar 

  • Albring M, Albrecht H, Alcorn G et al (1983) The measuring of the anti-inflammatory effect of a compound on the skin of volunteers. Methods Find Exp Clin Pharmacol 5:75–77

    Google Scholar 

  • Almasirad A, Amanzadeh Y, Taheri A et al (2011) Composition of a historical rose oil sample (Rosa damascena Mill., Rosaceae). J Essent Oil Res 19(2):110–112

    Google Scholar 

  • Al-Saidi S, Rameshkumar KB, Hisham A et al (2012) Composition and antibacterial activity of the essential oils of four commercial grades of Omani luban, the oleo-gum resin of Boswellia sacra FLUECK. Chem Biodivers 9(3):615–624

    CAS  PubMed  Google Scholar 

  • Al-Snafi AE (2016) A review on chemical constituents and pharmacological activities of Coriandrum sativum. IOSR J Pharm 6(7):17–42

    Google Scholar 

  • Al-Zuhair H, Al-Sayed B, Ameen HA et al (1996) Pharmacological studies of cardamom oil in animals. Pharmacol Res 34:79–82

    CAS  PubMed  Google Scholar 

  • Amiri H (2012) Essential oils composition and antioxidant properties of three Thymus species. Evid Based Complement Alternat Med 2012:728065

    PubMed  Google Scholar 

  • Aragăo GF, Carneiro LMV, Junior APF et al (2006) A possible mechanism for anxiolytic and antidepressant effect of alpha- and beta-amyrin from Protium heptaphyllum (Aubl.) March. Pharmacol Biochem Behav 85:827–834

    PubMed  Google Scholar 

  • Araujo DAO, Takayama C, de Faria FM et al (2011) Gastroprotective effects of essential oil from Protium heptaphyllum on experimental gastric ulcer models in rats. Rev Bras Farm 21:721–729

    CAS  Google Scholar 

  • Avallone R, Zanoli P, Puia G et al (2000) Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol 59:1387–1394

    CAS  PubMed  Google Scholar 

  • Bajpai VK, Kang SC (2010) Antifungal activity of leaf essential oil and extracts of Metasequoia glyptostroboides Mikiex Hu. J Am Oil Chem Soc 87:327–336

    CAS  Google Scholar 

  • Bajpai VK, Rahman A, Kang SC (2007) Chemical composition and anti-fungal properties of the essential oil and crude extracts of Metasequoia glyptostroboides Mikiex Hu. Ind Crop Prod 26(1):28–35

    CAS  Google Scholar 

  • Bajpai VK, Sharma A, Back KH (2013) Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 32:582–590

    CAS  Google Scholar 

  • Baser KH, Demirci B, Iscan G et al (2006) The essential oil constituents and antimicrobial activity of Anthemis aciphylla BOISS. Var. discoidea BOISS. Chem Pharm Bull 54:222–225

    CAS  PubMed  Google Scholar 

  • Basile A, Senatore F, Gargano R et al (2006) Antibacterial and antioxidant activities in Sidris italica (Miller) Greuter et Burdet essential oils. J Ethnopharmacol 107:240–248

    CAS  PubMed  Google Scholar 

  • Bellik Y, Benabdesselam F, Ayad A et al (2013) Antioxidant activity of the essential oil and oleoresin of Zingiber officinale Roscoe as affected by chemical environment. Int J Food Prop 16:1304–1313

    CAS  Google Scholar 

  • Ben Hassine D, Abderrabba M, Yvon Y et al (2012) Chemical composition and in vitro evaluation of the antioxidant and antimicrobial activities of Eucalyptus gillii essential oil and extracts. Molecules 17(8):9540–9558

    CAS  PubMed  Google Scholar 

  • Benites J, Bravo F, Rojas M et al (2011) Composition and microbiological screening of the essential oil from the leaves and stems of Senecio atacamensis. Phil from Chile. J Chil Chem Soc 56(2):712–714

    CAS  Google Scholar 

  • Białoń M, Krzyśko-Łupicka T, Pik A et al (2017) Chemical composition of herbal macerates and corresponding commercial essential oils and their effect on Bacteria Escherichia coli. Molecules 22:1887

    PubMed Central  Google Scholar 

  • Blumenthal M, Busse WR, Goldberg A et al (1998) The complete German commission E monographs: therapeutic guide to herbal medicines. Austin, American Botanical Council and Boston, Integr Med Commun, pp 180–182

    Google Scholar 

  • Bolechowski A, Moral R, Bustamante MA et al (2011) Composition of oregano essential oil (Origanum vulgare) as affected by the use of winery-distillery composts. J Essent Oil Res 23:32–38

    CAS  Google Scholar 

  • Borugă O, Jianu C, Mişcă C et al (2014) Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J Med Life 7(3):56–60

    PubMed  PubMed Central  Google Scholar 

  • Bozin B, Mimica-Dukic N, Samojlik I et al (2007) Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem 55:7879–7885

    CAS  PubMed  Google Scholar 

  • Bravo D, Pyatt N, Doane PH et al (2009) Meta analysis of growing ruminants fed a mixture of eugenol, cinnamaldehyde and capsicum oleoresin. J Dairy Sci 92:374

    Google Scholar 

  • Brunke E-J, Hammerschmidt F-J, Koester F-H et al (1991) Constituents of dill (Anethum graveolens L.) with sensory importance. J Essent Oil Res 3(4):257–267

    CAS  Google Scholar 

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328

    CAS  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94:223–253

    CAS  PubMed  Google Scholar 

  • Busquet M, Calsamiglia S, Ferret A et al (2005) Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J Dairy Sci 88:2508–2516

    CAS  PubMed  Google Scholar 

  • Busquet M, Calsamiglia S, Ferret A et al (2006) Plant extract affect in vitro rumen microbial fermentation. J Dairy Sci 89:761–771

    CAS  PubMed  Google Scholar 

  • Cantore LP, Iacobellis SN, Marco DA et al (2004) Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. (Miller) essential oil. J Agric Food Chem 52(26):7862–7866

    PubMed  Google Scholar 

  • Cardozo PW, Calsamiglia S, Ferret A et al (2004) Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J Anim Sci 83:3230–3236

    Google Scholar 

  • Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19(1):50–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cemek M, Kaga S, Simsek N et al (2008) Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. J Nat Med 62:284–293

    PubMed  Google Scholar 

  • Cerda A, Martínez ME, Soto C et al (2013) The enhancement of antioxidant compounds extracted from Thymus vulgaris using enzymes and the effect of extracting solvent. Food Chem 139:138–143

    CAS  PubMed  Google Scholar 

  • Cetin B, Ozer H, Cakir A et al (2010) Antimicrobial activities of essential oil and hexane extract of Florence fennel [Foeniculum vulgare var. azoricum (Mill.) Thell.] against foodborne microorganisms. J Med Food 13(1):196–204

    CAS  PubMed  Google Scholar 

  • Chahal KK, Bhardwaj U, Kaushal S et al (2015) Chemical composition and biological properties of Chrysopogon zizanioides (L.) Roberty syn. Vetiveria zizanioides (L.) Nash-a review. Indian J Nat Prod Resour 6(4):251–260

    CAS  Google Scholar 

  • Cheng SS, Huang CG, Chen YJ et al (2008) Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour Technol 99(9):3617–3622

    CAS  PubMed  Google Scholar 

  • Chenni M, El Abed D, Rakotomanomana N et al (2016) Comparative study of essential oils extracted from Egyptian basil leaves (Ocimum basilicum L.) using hydro-distillation and solvent-free microwave extraction. Molecules 21(1):E113. https://doi.org/10.3390/molecules21010113

    Article  CAS  PubMed  Google Scholar 

  • Choi E-M, Hwang J-K (2004) Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 75:557–565

    PubMed  Google Scholar 

  • Cicerale S, Lucas LJ, Keast RSJ (2012) Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol 23(2):129–135

    CAS  PubMed  Google Scholar 

  • Cimanga K, Kambu K, Tona L et al (2006) Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol 79(2):213–220

    Google Scholar 

  • Constantin M, Sartorelli P, Limburger R et al (2001) Essential oils from Piper cernuum and Piper regnellii: antimicrobial activities and analysis by GC/MS and 13C-NMR. Planta Med 67:771–773

    Google Scholar 

  • Dawidowicz AL, Olszowy M (2014) Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components. Nat Prod Res 28:1952–1963

    CAS  PubMed  Google Scholar 

  • De Falco E, Mancini E, Roscigno G et al (2013) Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules 18:14948–14960

    PubMed  PubMed Central  Google Scholar 

  • Delamare APL, Moschen-Pistorello IT, Artico L et al (2007) Antibacterial activity of the essential oil of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem 100:603–608

    Google Scholar 

  • Dias PC, Foglio MA, Possenti A et al (2000) Antiulcerogenic activity of crude hydroalcoholic extract of Rosmarinus officinalis L. J Ethnopharmacol 69:57–62

    CAS  PubMed  Google Scholar 

  • Djihane B, Wafa N, Elkhamssa S et al (2017) Chemical constituents of Helichrysum italicum (Roth) G. Don essential oil and their antimicrobial activity against Gram-positive and Gram-negative bacteria, filamentous fungi and Candida albicans. Saudi Pharm J 25:780–787

    PubMed  Google Scholar 

  • Djiri S, Casabianca H, Hanchi B et al (2014) Composition of garlic essential oil (Allium sativum L.) as influenced by drying method. J Essent Oil Res 26(2):91–96

    Google Scholar 

  • Dolara P, Corte B, Ghelardini C et al (2000) Local anesthetic, antibacterial and antifungal properties of sesquiterpenes from myrrh. Planta Med 66(4):356–358

    CAS  PubMed  Google Scholar 

  • Fachini-Queiroz FC, Kummer R, Estevao-Silva CF et al (2012) Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid Based Complement Alternat Med 2012:657026

    PubMed  PubMed Central  Google Scholar 

  • Ferme D, Banjac M, Calsamiglia S et al (2004) The effects of plant extracts on microbial community structure in a rumen-simulating continuous-culture system as revealed by molecular profiling. Folia Microbiol (Praha) 49:151–155

    CAS  Google Scholar 

  • Figiel A, Szumny A, Gutiérrez-Ortíz A et al (2010) Composition of oregano essential oil (Origanum vulgare) as affected by drying method. J Food Eng 98(2):240–247

    CAS  Google Scholar 

  • Filipwicz N, Kaminski M, Kurlenda J et al (2003) Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytother Res 17:227–231

    Google Scholar 

  • Frank A, Unger M (2006) Analysis of frankincense from various Boswellia species with inhibitory activity on human drug metabolizing cytochrome P450 enzymes using liquid chromatography mass spectrometry after automated on-line extraction. J Chromatogr A 1112(1–2):255–262

    CAS  PubMed  Google Scholar 

  • Gardiner P (2007) Complementary, holistic, and integrative medicine: chamomile. Pediatr Rev 28(4):16–18

    Google Scholar 

  • Glisic SB, Milojevic SZ, Dimimitrijevic SL et al (2007) Antimicrobial activity of the essential oil and different fractions of Juniperus communis L., and comparison with some commercial antibiotics. J Serb Chem Soc 2:311–320

    Google Scholar 

  • Glowania HJ, Raulin C, Swoboda M (1987) Effect of chamomile on wound healing-a clinical double-blind study. Z Hautkr 62:1267–1271

    Google Scholar 

  • Govindarajan M, Rajeswary M, Hoti SL et al (2016) Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res 15(2):807–815

    Google Scholar 

  • Graf J (2000) Herbal anti-inflammatory agents for skin diseases. Skin Therapy Lett 5:3–5

    CAS  PubMed  Google Scholar 

  • Gupta B, Ghosh KK, Gupta RC (2016) Thymoquinone. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic Press/Elsevier, Amsterdam, pp 541–550

    Google Scholar 

  • Hadfield N (2001) The role of aromatherapy massage in reducing anxiety in patients with malignant brain tumors. Int J Palliat Nurs 7:279–285

    CAS  PubMed  Google Scholar 

  • Hashemi SM, Safavi SA (2012) Chemical constituents and toxicity of essential oils of oriental arborvitae, Platycladus orientalis L. Franco, against three stored-product beetles. Chilean J Agric Res 72(2):188–194

    Google Scholar 

  • Hernández T, Canales M, Avila JG et al (2005) Comparative and antibacterial activity of essential oil of Lantana achyranthifolia Desf. (Verbenaceae). J Ethnopharmacol 96(3):551–554

    PubMed  Google Scholar 

  • Hosseinzadeh H, Karimi GR, Ameri M (2002) Effects of Anethum graveolens L. seed extracts on experimental gastric irritation models in mice. BMC Pharmacol 2:21–27

    PubMed  PubMed Central  Google Scholar 

  • Howes MJR, Simmonds MSJ, Kite GC (2004) Evaluation of the quality of sandalwood essential oils by gas chromatography-mass spectrometry. J Chromatogr 1028(2):307–312

    CAS  Google Scholar 

  • Hsouna AB, Halima NB, Smaoui S et al (2017) Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis 16:146

    PubMed  PubMed Central  Google Scholar 

  • Hui L, He L, Huan L et al (2010) Chemical composition of Lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria. Afr J Microbiol Res 4(4):309–313

    Google Scholar 

  • Huong T, Thang TD, Ogunwande IA (2015) Chemical constituents of essential oils from the leaves, stems, roots and fruits of Alpinia polyantha. Nat Prod Commun 10(2):367–368

    Google Scholar 

  • Hussain AI, Anwar F, Shahid M et al (2011) Chemical composition, and antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. J Essent Oil Res 22(1):78–84

    Google Scholar 

  • Igarashi M, Miyazaki Y (2013) A review on bioactivities of Perilla: progress in research on the functions of Perilla as medicine and food. Evid Based Complement Alternat Med 2013:925342

    PubMed  PubMed Central  Google Scholar 

  • Igarashi M, Song C, Ikei H et al (2014) Effects of olfactory stimulation with Perilla essential oil on prefrontal cortex activity. J Altern Complement Med 20(7). https://doi.org/10.1089/acm.214.0100

  • Isbilir SS, Sagiroglu A (2011) Antioxidant potential of different dill (Anethum graveolens L.) leaf extract. Int J Food Prop 14:894–902

    Google Scholar 

  • Jiang X, Zhang JC, Liu YW et al (2007) Studies on chemical constituents of Valeriana officinalis. Zhong Yao Cai 30(11):1391–1393

    CAS  PubMed  Google Scholar 

  • Juliani HR Jr, Biurrun F, Koroch AR et al (2002) Chemical constituents and antimicrobial activity of the essential oil of Lantana xenica. Planta Med 68(8):762–764

    CAS  PubMed  Google Scholar 

  • Khalid KA (2016) Essential oil constituents of summer savory plants propagated and adapted under Egyptian climate. J Appl Sci 16(2):54–57

    CAS  Google Scholar 

  • Khesorn N, Manasnant B, Banyong K et al (2010) Antimicrobial activity of alkaloid from roots of Vetiveria zizanioides (L.) Nash ex small. Thai Pharm Health Sci J 5(2):99–102

    Google Scholar 

  • Komaki A, Hoseini F, Shahidi S et al (2016) Study of the effect of extract of Thymus vulgaris on anxiety in male rats. J Tradit Complement Med 6:257–261

    PubMed  Google Scholar 

  • Kroll U, Cordes C (2006) Pharmaceutical prerequisites for a multi-target therapy. Phytomedicine 5:12–19

    Google Scholar 

  • Kumar P, Ansari SH, Ali J (2009) Herbal remedies for the treatment of periodontal disease-a patent review. Recent Pat Drug Deliv Formul 3:221–228

    CAS  PubMed  Google Scholar 

  • Kuorwel KK, Cran MJ, Sonneveld K et al (2011) Essential oils and their principal constituents as antimicrobial agents for synthetic packaging films. J Food Sci 76(9):R164–R177

    CAS  PubMed  Google Scholar 

  • Kusuma HS, Mahfud M (2016) Chemical composition of essential oil of Indonesia sandalwood extracted by microwave-assisted hydrodistillation. AIP Conf Proc 1755(1):50001. https://doi.org/10.1063/1.4958484

    Article  CAS  Google Scholar 

  • Kyung KH (2012) Antimicrobial properties of Allium species. Curr Opin Biotechnol 23(2):142–147

    CAS  PubMed  Google Scholar 

  • Laciar A, Ruiz ML, Flores RC et al (2009) Antibacterial and antioxidant activities of the essential oil of Artemisia echegarayi Hieron. (Asteraceae). Rev Argent Microbiol 41:226–231

    CAS  PubMed  Google Scholar 

  • Lambert RJW, Skandamis PN, Coote PJ et al (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    CAS  PubMed  Google Scholar 

  • Lawal OA (2017) Medicinal spices and vegetables from Africa. Academic Press, London, pp 397–423

    Google Scholar 

  • Lemberkovics E, Kéry A, Marczal G et al (1998) Phytochemical evaluation of essential oils, medicinal plants and their preparations. Acta Pharm Hung 68:141–149

    CAS  PubMed  Google Scholar 

  • Lillehoj H, Liu Y, Calsamiglia S et al (2018) Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res 49:76

    PubMed  PubMed Central  Google Scholar 

  • McKay DL, Blumberg JB (2000) A review of the bioactivity and health benefits of chamomile tea (Matricaria ricutita L.). Phytother Res 20:519–530

    Google Scholar 

  • Mendez AHS, Cornejo CGF, Coral MFC et al (2017) Chemical composition, antimicrobial and antioxidant activities of the essential oil of Bursera graveolens (Burseraceae) from Peru. Indian J Pharm Educ Res 51(3):S429–S435

    CAS  Google Scholar 

  • Merfort I, Heilmann J, Hagedorn-Leweke U et al (1994) In vivo skin penetration studies of chamomile flavones. Pharmazie 49:509–511

    CAS  PubMed  Google Scholar 

  • Milos M, Radonic A, Bezic N et al (2001) Localities and seasonal variations in the chemical compositions of essential oils of Satureja montana L. and S. cuneifolia Ten. Flavour Fragr J 16:157–160

    CAS  Google Scholar 

  • Minaiyan M, Ghannadi AR, Afsharipour M et al (2011) Effects of extract and essential oil of Rosmarinus officinalis L. on TNBS-induced colitis in rats. Res Pharm Sci 6:13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misra MC, Parshad R (2000) Randomized clinical trial of micronized flavonoids in the early control of bleeding from acute internal hemorrhoids. Br J Surg 87:868–872

    CAS  PubMed  Google Scholar 

  • Mohamad RH, El-Bastawesy AM, Abdel-Monem MG et al (2011) Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (Foeniculum vulgare). J Med Food 14(9):986–1001

    CAS  PubMed  Google Scholar 

  • Mothana RA, Khaled JM, Noman OM et al (2018) Phytochemical analysis and evaluation of the cytotoxic, antimicrobial and antioxidant activities of essential oils from three Plectranthus species grown in Saudi Arabia. BMC Complement Altern Med 18:237

    PubMed  PubMed Central  Google Scholar 

  • Muchtaridi, Subarnas A, Apriyantono A et al (2010) Identification of compounds in the essential oil of nutmeg seeds (Myristica fragrans Houtt.) that inhibit locomotor activity in mice. Int J Mol Sci 11:4771–4781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagababu E, Lakshmaiah M (1992) Inhibitory effect of eugenol on non-enzymatic lipid peroxidation in rat liver mitochondria. Biochem Pharmacol 43:2393–2400

    CAS  PubMed  Google Scholar 

  • Nandhini S, Narayanan KB, Ilango K (2018) Valeriana officinalis: a review of its traditional uses, phytochemistry and pharmacology. Asian J Pharm Clin Res 11(1):36–41

    Google Scholar 

  • Nayak BS, Raju SS, Rao AV (2007) Wound healing activity of Matricaria ricutita L. extract. J Wound Care 16:298–302

    PubMed  Google Scholar 

  • Nissen HP, Blitz H, Kreyel HW (1988) Prolifometrie, eine methode zur beurteilung der therapeutischen wirsamkeit kon Kamillosan®-Salbe. Z Hautkr 63:84–90

    Google Scholar 

  • Nostro A, Cannatelli MA, Marino A et al (2003) Evaluation of antiherpesvirus-1 and genotoxic activities of Helichrysum italicum extract. New Microbiol 26:125–128

    CAS  PubMed  Google Scholar 

  • Oguey C, Wall EH (2016) 1570A blend of cinnamaldehyde, eugenol, and capsicum oleoresin improves milking performance in lactating daily cows. J Anim Sci 94:763

    Google Scholar 

  • Oh J, Giallongo F, Frederick T et al (2015) Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J Dairy Sci 98:6327–6339

    CAS  PubMed  Google Scholar 

  • Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli 0157:H7 and Listeria monocytogenes. J Food Prot 69(5):1046–1055

    PubMed  Google Scholar 

  • Palá-Paul J, Pérez-Alonso J, Velasco-Negueruela A et al (2006) Essential oil composition of Sideritis hirsuta L. from Guadalajara province, Spain. Flavour Fragr J 21:410–415

    Google Scholar 

  • Patzelt-Wenczler R, Ponce-Pöschl E (2000) Proof of efficacy Kamillosan® cream in atopic eczema. Eur J Med Res 5:171–175

    CAS  PubMed  Google Scholar 

  • Perry NS, Bollen C, Perry EK et al (2003) Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behav 75:651–659

    CAS  PubMed  Google Scholar 

  • Picon PD, Picon RV, Costa AF et al (2010) Randomized clinical trial of a phytotherapic compound containing Pimpinella anisum, Foeniculum vulgare, Sambucus nigra, and Cassia angustifolia for chronic constipation. BMC Complement Altern Med 10:17

    PubMed  PubMed Central  Google Scholar 

  • Pierce A (1999) American pharmaceutical association practical guide to natural medicines. Stonesong Press, New York, pp 338–340

    Google Scholar 

  • Pierozan MK, Pauletti GF, Rota L et al (2009) Chemical characterization and antimicrobial activity of essential oils of Salvia L. species. Cienc Technol Aliment 29:764–770

    Google Scholar 

  • Pinto P, Santos CN (2017) Worldwide (poly)phenol intake: assessment methods and identified gaps. Eur J Nutr 56:1393–1408

    CAS  PubMed  Google Scholar 

  • Porte A, Godoy RLO, Maia-Porte LH (2013) Chemical composition of sage (Salvia officinalis L.) essential oil from the Rio de Janeiro State (Brazil). Rev Bras Plantas Med 15(3):438–441

    CAS  Google Scholar 

  • Porter NG, Shaw ML, Shaw GJ et al (1983) Content and composition of dill herb oil in the whole plant and the different plant parts during crop development. N Z J Agric Res 26(1):119–127

    CAS  Google Scholar 

  • Puškárová A, Bučková M, Kraková L et al (2017) The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci Rep 7:8211

    PubMed  PubMed Central  Google Scholar 

  • Qiu J, Li H, Su H et al (2012) Chemical composition of fennel essential oil and its impact on Staphylococcus aureus exotoxin production. World J Microbiol Biotechnol 28(4):1399–1405

    CAS  PubMed  Google Scholar 

  • Radulescu V, Saviuc C, Chifiriuc C et al (2011) Chemical composition and antimicrobial activity of essential oil from Shoots Spruce (Picea abies L.). Rev Chim (Bucharest, Rom) 62(1):69–74

    CAS  Google Scholar 

  • Raina VK, Kumar A, Aggarwal KK (2013) Essential oil composition of Ginger (Zingiber officinale Roscoe) rhizomes from different place in India. J Essent Oil Bear Plants 89(2):187–191

    Google Scholar 

  • Raina AP, Verma SK, Abraham Z (2014) Volatile constituents of essential oils isolated from Alpinia galanga Willd. (L.) and A. officinarum Hance rhizomes from North East India. J Essent Oil Res 26(1):24–28

    CAS  Google Scholar 

  • Ramsewak RS, Nair MG, Stommel M et al (2003) In vitro antagonistic activity of monoterpenes and their mixtures against ‘toe nail fungus’ pathogens. Phytother Res 17(4):376–379

    CAS  PubMed  Google Scholar 

  • Rana VS, Blazquez MA (2015) Chemical composition of the essential oil of Anethum graveolens aerial parts. J Essent Oil Bear Plants 17(6):1219–1223

    Google Scholar 

  • Rao PGP, Rao LJ, Raghavan B (1999) Chemical composition of essential oils of garlic (Allium sativum L.). J Spices Aromat Crops 8(1):41–47

    Google Scholar 

  • Rebouças de Araujo JD, Coriolano de Aquino N, Véras de Aguiar Guerra AC et al (2017) Chemical composition and evaluation of the antibacterial and cytotoxic activities of the essential oil from the leaves of Myracrodruon urundeuva. BMC Complement Alternat Med 17(1):419

    Google Scholar 

  • Robu S, Aprotosoaie AC, Spac A et al (2011) Studies regarding chemical composition of lavender volatile oils. Rev Med Chir Soc Med Nat Iasi 115(2):584–589

    PubMed  Google Scholar 

  • Rodrigues TG, Fernandes A Jr, Sousa JP et al (2009) In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages. Nat Prod Res 23(4):319–326

    CAS  PubMed  Google Scholar 

  • Rota MC, Herrera A, Martinez RM et al (2006) Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis, and Thymus hyemalis essential oils. Food Control 19:681–687

    Google Scholar 

  • Rozza AL, Pellizzon CH (2013) Essential oils from medicinal and aromatic plants: a review of the gastroprotective and ulcer-healing activities. Fundam Clin Pharmacol 27:51–63

    CAS  PubMed  Google Scholar 

  • Sahin F, Karaman I, Gulluce M et al (2003) Evaluation of antimicrobial activities of Satureja hortensis L. J Ethnopharmacol 87:61–65

    CAS  PubMed  Google Scholar 

  • Sakkas H, Papadopoulou C (2017) Antimicrobial activity of basil, oregano, and thyme essential oils. J Microbiol Biotechnol 27(3):429–438

    CAS  PubMed  Google Scholar 

  • Sala A, Recio M, Giner RM et al (2002) Anti-inflammatory and antioxidant properties of Helichrysum italicum. J Pharm Pharmacol 54:365–371

    CAS  PubMed  Google Scholar 

  • Salmon I (1992) Chamomile a medicinal plant. J Herbs Spices Med Plants 10:1–4

    Google Scholar 

  • Şarer E, Toprak Y, Otlu B et al (2011) Composition and antimicrobial activity of the essential oil from Mentha spicata L. subsp. spicata. J Essent Oil Res 23(1):105–108

    Google Scholar 

  • Sebei K, Sakouhi F, Herchi W et al (2015) Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol Res 48(1):7

    PubMed  PubMed Central  Google Scholar 

  • Sharopov FS, Zhang H, Setzer WN (2014) Composition of geranium (Pelargonium graveolens) essential oil from Tajikistan. Am J Essent Oils Nat Prod 2(2):13–16

    Google Scholar 

  • Shellie R, Mondello L, Marriott P et al (2002) Characterization of lavender essential oils by gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J Chromatogr A 970(1–2):225–234

    CAS  PubMed  Google Scholar 

  • Silva J, Abebe W, Sousa SM et al (2003) Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol 89(2–3):277–283

    CAS  PubMed  Google Scholar 

  • Singh G, Maurya S, de Lamposana MP et al (2005) Chemical constituents, antimicrobial investigation, and antioxidative potential of Anethum graveolens L. essential oil and acetone extract. Part 52. J Food Sci 70(4):208–215

    Google Scholar 

  • Singh P, Shukla R, Prakash B et al (2010) Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Obseck essential oils and their cyclic monoterpene, DL-limonene. Food Chem Toxicol 48:1734–1740

    CAS  PubMed  Google Scholar 

  • Singh O, Khanam Z, Misra N et al (2011) Chamomile (Matricaria chamomilla L.): an overview. Pharmacogn Rev 5(9):82–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Singh R, Gambhir RS et al (2016) Local drug delivery system in treatment of periodontitis: a review. J Periodontol Med Clin Pract 3(3):153–160

    Google Scholar 

  • Siroli L, Patrignani F, Montanari C et al (2014) Characterization of oregano (Origanum vulgare) essential oil and definition of its antimicrobial activity against Listeria monocytogenes and Escherichia coli in vitro system and on foodstuff surfaces. Afr J Microbiol Res 8(29):2746–2753

    CAS  Google Scholar 

  • Smigielski K, Raj A, Krosowiak K et al (2009) Chemical composition of the essential oil of Lavandula angustifolia cultivated in Poland. J Essent Oil Bear Plants 12(3):338–347

    CAS  Google Scholar 

  • Solórzano-Santos F, Miranda-Novales MG (2012) Essential oils from aromatic herbs as antimicrobial agents. Curr Opin Biotechnol 23(2):136–141

    PubMed  Google Scholar 

  • Srivastava JK, Pandey M, Gupta S (2009) Chamomile, a novel and selective Cox-2 inhibitor with anti-inflammatory activity. Life Sci 85:663–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava JK, Shankar E, Gupta S (2010) Chamomile: a herbal medicine of the past with bright future. Mol Med Rep 3(6):895–901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanojević LP, Stanojević JS, Cvetković DJ et al (2016) Antioxidant activity of oregano essential oil (Origanum vulgare L.). Biol Nyssana 7(2):131–139

    Google Scholar 

  • Stelwagen K, Wall EH, Bravo DM (2016) Effect of rumen-protected capsicum on milk production in early lactating cows in a pasture-based system. J Anim Sci 94:675

    Google Scholar 

  • Stoyanova A, Konakchiev A, Damyanova S et al (2006) Composition and antimicrobial activity of ginger essential oil from Vietnam. J Essent Oil Bear Plants 84(4):93–98

    Google Scholar 

  • Su YC, Ho CL, Wang EI et al (2006) Antifungal activities and chemical compositions of essential oils from leaves of four eucalyptus. Taiwan J For Sci 21:49–61

    CAS  Google Scholar 

  • Suppakul P, Miltz J, Sonneveld K et al (2003) Antimicrobial properties of basil and its possible application in food packaging. J Agric Food Chem 51(11):3197–3207

    CAS  PubMed  Google Scholar 

  • Taheri JB, Azimi S, Rafieian N et al (2011) Herbs in dentistry. Int Dent J 61:287–296

    PubMed  Google Scholar 

  • Takayama C, de-Faria FM, de Almeida CA et al (2016) Chemical composition of Rosmarinus officinalis essential oil and antioxidant action against gastric damage induced by absolute ethanol in the rat. Asian Pac J Trop Biomed 6(8):677–681

    Google Scholar 

  • Tan LTH, Lee LH, Yin WF et al (2015) Traditional uses, phytochemistry, and bioactivities of Cananga odorata (Ylang Ylang). Evid Based Complement Alternat Med 2015:896314

    PubMed  PubMed Central  Google Scholar 

  • Tawfik SS, Abbady MI, Ahmed M et al (2006) Therapeutic efficacy attained with thyme essential oil supplementation throughout γ-irradiated rats. Egypt J Rad Sci Appl 19(1):1–22

    Google Scholar 

  • Tekippe JA, Tacoma R, Hristov AN et al (2013) Effect of essential oils on ruminal fermentation and lactation performance of dairy cows. J Dairy Sci 96:7892–7903

    CAS  PubMed  Google Scholar 

  • Tian YH, Kim HC et al (2005) Hepatoprotective constituents of Cudrania tricuspidata. Arch Pharm Res 28:44–48

    CAS  PubMed  Google Scholar 

  • Tipton DA, Hamman NR, Dabbous MKH (2006) Effect of myrrh oil on IL-1beta stimulation of NF-kappaB activation and PGE2 production in human gingival fibroblasts and epithelial cells. Toxicol In Vitro 20(2):248–255

    CAS  PubMed  Google Scholar 

  • Tzakou O, Verykokidou E, Roussis V et al (1998) Chemical composition and antibacterial properties of Thymus longicaulis subsp. Chaubardii oils: three chemotypes in the same population. J Essent Oil Res 10:97–99

    CAS  Google Scholar 

  • Vera RR, Chane-Ming J (1998) Chemical composition of essential oil of dill (Anethum graveolens L.) growing in Reunion island. J Essent Oil Res 10(5):539–542

    CAS  Google Scholar 

  • Verma RS, Padalia RC, Chauhan A et al (2011) Volatile constituents of essential oil and rose water of damask rose (Rosa damascena Mill.) cultivars from North Indian hills. Nat Prod Res 25(17):1577–1584

    CAS  PubMed  Google Scholar 

  • Viuda-Martos M, Ruíz-Navajas Y, Fernández-López J et al (2007a) Antifungal activities of thyme, clove and oregano essential oils. J Food Saf 27:91–101

    Google Scholar 

  • Viuda-Martos M, Ruíz-Navajas Y, Fernández-López J et al (2007b) Chemical composition of the essential oils obtained from some spices widely used in Mediterranean region. Acta Chim Slov 54:921–926

    CAS  Google Scholar 

  • Wall EH, Doane PH, Donkin SS et al (2014) The effects of supplementation with a blend of cinnamaldehyde and eugenol on feed intake and milk production of dairy cows. J Dairy Sci 97:5709–5717

    CAS  PubMed  Google Scholar 

  • Wanner J, Bail S, Jirovetz L et al (2010) Chemical composition and antimicrobial activity of cumin oil (Cuminum cyminum, Apiaceae). Nat Prod Commun 5(9):1355–1358

    CAS  PubMed  Google Scholar 

  • Wojdylo A, Figiel A, Oszmianski J (2008) Dehydration techniques effect on polyphenols content, antioxidant activity and color of oregano herb. J Clin Biochem Nutr 43:1–4

    Google Scholar 

  • Woolley CL, Suhail MM, Smith BL et al (2012) Chemical differentiation of Boswellia sacra and Boswellia carterii essential oils by gas chromatography and chiral gas chromatography-mass spectrometry. J Chromatogr A 1261:158–163

    CAS  PubMed  Google Scholar 

  • Xu J-G, Liu T, Hu Q-P et al (2016) Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules 21:1194

    PubMed Central  Google Scholar 

  • Yamini Y, Sefidkon F, Pourmortazavi SM (2002) Comparison of essential oil composition of Iranian fennel (Foeniculum vulgare) obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Flavour Fragr J 17(5):345–348

    CAS  Google Scholar 

  • Yanishlieva NV, Marinova EM, Gordon MH et al (1999) Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem 64:59–66

    CAS  Google Scholar 

  • Zaouali Y, Bouzaine T, Boussaid M (2010) Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food Chem Toxicol 48:3144–3152

    CAS  PubMed  Google Scholar 

  • Zhang WK, Tao SS, Li TT et al (2016) Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo. Food Nutr 60:30849

    Google Scholar 

  • Zhu N, Sheng S, Sang S et al (2003) Isolation and characterization of several aromatic sesquiterpenes from Commiphora myrrha. Flavour Fragr J 18:282–285

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Ms. Robin B. Doss for her technical assistance in preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, A., Lall, R., Sinha, A., Gupta, R.C. (2019). Essential Oils. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_11

Download citation

Publish with us

Policies and ethics