Skip to main content

Computation of Kullback-Leibler Divergence Between Labeled Stochastic Systems with Non-identical State Spaces

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11343))

Included in the following conference series:

  • 476 Accesses

Abstract

Model checking of biological systems is computational intensive because of state explosion. Model reduction is one of the directions that has been addressed for state explosion. Formal modeling of biological pathways leads to additional challenges given that biological pathways are multiscale and stochastic. Model abstractions incorporating multiscale biological processes are represented as labeled stochastic systems. Kullback-Leibler divergence is computed to measure the closeness of stochastic systems. A fixed point polynomial time algorithm is presented to compute Kullback-Leibler divergence with an approximation when comparing labeled stochastic systems with non-identical state spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, A.: Approximation metrics based on probabilistic bisimulations for general state-space Markov processes: a survey. Electron. Notes Theor. Comput. Sci. 297, 3–25 (2013)

    Article  Google Scholar 

  2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On the metric-based approximate minimization of Markov Chains. J. Log. Algebraic Methods Program. 100, 36–56 (2018)

    Article  MathSciNet  Google Scholar 

  3. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT press, Cambridge (2008)

    MATH  Google Scholar 

  4. Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Foundational aspects of multiscale modeling of biological systems with process algebras. Theor. Comput. Sci. 431, 96–116 (2012)

    Article  MathSciNet  Google Scholar 

  5. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Syntactic Markovian bisimulation for chemical reaction networks. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 466–483. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_23

    Chapter  Google Scholar 

  6. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36481-1_13

    Chapter  Google Scholar 

  7. Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilistic bisimilarity. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 437–451. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9_29

    Chapter  MATH  Google Scholar 

  8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge (1999)

    Google Scholar 

  9. Daca, P., Henzinger, T.A., Kretinsky, J., Petrov, T.: Linear distances between Markov Chains. In: Desharnais, J., Jagadeesan, R. (eds.) 27th International Conference on Concurrency Theory (CONCUR 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 59, pp. 20:1–20:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016). http://drops.dagstuhl.de/opus/volltexte/2016/6182

  10. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: Approximating labeled Markov processes. In: Proceedings of 15th Annual IEEE Symposium on Logic in Computer Science 2000, pp. 95–106. IEEE (2000)

    Google Scholar 

  11. Doyen, L., Henzinger, T.A., Raskin, J.F.: Equivalence of labeled Markov Chains. Int. J. Found. Comput. Sci. 19(03), 549–563 (2008)

    Article  MathSciNet  Google Scholar 

  12. Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-based systems. Theor. Comput. Sci. 431, 137–164 (2012)

    Article  MathSciNet  Google Scholar 

  13. Fijalkow, N., Kiefer, S., Shirmohammadi, M.: Trace refinement in labelled Markov decision processes. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 303–318. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5_18

    Chapter  Google Scholar 

  14. Ghosh, K.: Computing equivalences on model abstractions representing multiscale processes. Nano Commun. Netw. 6(3), 118–123 (2015)

    Article  Google Scholar 

  15. Ghosh, K., Schlipf, J.: Formal modeling of a system of chemical reactions under uncertainty. J. Bioinf. Comput. Biol. 12(05), 1440002 (2014)

    Article  Google Scholar 

  16. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and stuttering equivalence. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 626–638. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032063

    Chapter  MATH  Google Scholar 

  17. Groote, J.F., Jansen, D.N., Keiren, J.J., Wijs, A.J.: An o (m log n) algorithm for computing stuttering equivalence and branching bisimulation. ACM Trans. Comput. Logic (TOCL) 18(2), 13 (2017)

    Article  Google Scholar 

  18. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  19. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)

    Article  MathSciNet  Google Scholar 

  20. Paulevé, L.: Reduction of qualitative models of biological networks for transient dynamics analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 15, 1167–1179 (2017, in press)

    Article  Google Scholar 

  21. Pham, T.D., Zuegg, J.: A probabilistic measure for alignment-free sequence comparison. Bioinformatics 20(18), 3455–3461 (2004)

    Article  Google Scholar 

  22. Shin, S.W., Thachuk, C., Winfree, E.: Verifying chemical reaction network implementations: a pathway decomposition approach. Theor. Comput. Sci. (2017)

    Google Scholar 

  23. Snowden, T.J., van der Graaf, P.H., Tindall, M.J.: Methods of model reduction for large-scale biological systems: a survey of current methods and trends. Bull. Math. Biol. 79, 1–38 (2017)

    Article  MathSciNet  Google Scholar 

  24. Sunnåker, M., Schmidt, H., Jirstrand, M., Cedersund, G.: Zooming of states and parameters using a lumping approach including back-translation. BMC Syst. Biol. 4(1), 28 (2010)

    Article  Google Scholar 

  25. Thorsley, D., Klavins, E.: Model reduction of stochastic processes using wasserstein pseudometrics. In: 2008 American Control Conference, pp. 1374–1381. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, K. (2018). Computation of Kullback-Leibler Divergence Between Labeled Stochastic Systems with Non-identical State Spaces. In: Tang, S., Du, DZ., Woodruff, D., Butenko, S. (eds) Algorithmic Aspects in Information and Management. AAIM 2018. Lecture Notes in Computer Science(), vol 11343. Springer, Cham. https://doi.org/10.1007/978-3-030-04618-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04618-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04617-0

  • Online ISBN: 978-3-030-04618-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics