Incentives and Coordination in Bottleneck Models

  • Moshe Babaioff
  • Sigal OrenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11316)


We study a variant of Vickrey’s classic bottleneck model. In our model there are n agents and each agent strategically chooses when to join a first-come-first-served observable queue. Agents dislike standing in line and they take actions in discrete time steps: we assume that each agent has a cost of 1 for every time step he waits before joining the queue and a cost of \(w>1\) for every time step he waits in the queue. At each time step a single agent can be processed. Before each time step, every agent observes the queue and strategically decides whether or not to join, with the goal of minimizing his expected cost.

In this paper we focus on symmetric strategies which are arguably more natural as they require less coordination. This brings up the following twist to the usual price of anarchy question: what is the main source for the inefficiency of symmetric equilibria? is it the players’ strategic behavior or the lack of coordination?

We present results for two different parameter regimes that are qualitatively very different: (i) when w is fixed and n grows, we prove a tight bound of 2 and show that the entire loss is due to the players’ selfish behavior (ii) when n is fixed and w grows, we prove a tight bound of \(\varTheta \left( \sqrt{\frac{w}{n}}\right) \) and show that it is mainly due to lack of coordination: the same order of magnitude of loss is suffered by any symmetric profile.


  1. 1.
    Arnott, R., De Palma, A., Lindsey, R.: Economics of a bottleneck. J. Urban Econ. 27(1), 111–130 (1990)CrossRefGoogle Scholar
  2. 2.
    Arnott, R., De Palma, A., Lindsey, R.: Does providing information to drivers reduce traffic congestion? Transp. Res. Part A: Gen. 25(5), 309–318 (1991)CrossRefGoogle Scholar
  3. 3.
    Arnott, R., De Palma, A., Lindsey, R.: A structural model of peak-period congestion: a traffic bottleneck with elastic demand. Am. Econ. Rev. 83(1), 161–179 (1993)Google Scholar
  4. 4.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. SIAM J. Comput. 42(1), 160–177 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ben-Akiva, M., De Palma, A., Isam, K.: Dynamic network models and driver information systems. Transp. Res. Part A: Gen. 25(5), 251–266 (1991)CrossRefGoogle Scholar
  6. 6.
    Cayirli, T., Veral, E.: Outpatient scheduling in health care: a review of literature. Prod. Oper. Manag. 12(4), 519–549 (2003)CrossRefGoogle Scholar
  7. 7.
    Daganzo, C.F., Garcia, R.C.: A pareto improving strategy for the time-dependent morning commute problem. Transp. Sci. 34(3), 303–311 (2000)CrossRefGoogle Scholar
  8. 8.
    Fiat, A., Mansour, Y., Nadav, U.: Efficient contention resolution protocols for selfish agents. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium On Discrete Algorithms (SODA), pp. 179–188 (2007)Google Scholar
  9. 9.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Spirakis, P.: Extreme nash equilibria. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841, pp. 1–20. Springer, Heidelberg (2003). Scholar
  10. 10.
    Gilboa-Freedman, G., Hassin, R., Kerner, Y.: The price of anarchy in the markovian single server queue. IEEE Trans. Autom. Control 59(2), 455–459 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Glazer, A., Hassin, R.: ?/M/1: on the equilibrium distribution of customer arrivals. Eur. J. Oper. Res. 13(2), 146–150 (1983)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hassin, R.: Rational Queueing. Chapman and Hall/CRC, London (2016)CrossRefGoogle Scholar
  13. 13.
    Hassin, R., Haviv, M.: To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems, 59. Springer, Heidelberg (2003). Scholar
  14. 14.
    Hassin, R., Kleiner, Y.: Equilibrium and optimal arrival patterns to a server with opening and closing times. IIE Trans. 43(3), 164–175 (2010)CrossRefGoogle Scholar
  15. 15.
    Hassin, R., Roet-Green, R.: The impact of inspection cost on equilibrium, revenue, and social welfare in a single-server queue. Oper. Res. 65(3), 804–820 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Haviv, M., Roughgarden, T.: The price of anarchy in an exponential multi-server. Oper. Res. Lett. 35(4), 421–426 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Honnappa, H., Jain, R.: Strategic arrivals into queueing networks: the network concert queueing game. Oper.Res. 63(1), 247–259 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jain, R., Juneja, S., Shimkin, N.: The concert queueing game: to wait or to be late. Discrete Event Dyn. Syst. 21(1), 103–138 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Juneja, S., Shimkin, N.: The concert queueing game: strategic arrivals with waiting and tardiness costs. Queueing Syst. 74(4), 369–402 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kerner, Y.: Equilibrium joining probabilities for an M/G/1 queue. Games Econ. Behav. 71(2), 521–526 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lago, A., Daganzo, C.F.: Spillovers, merging traffic and the morning commute. Transp. Res. Part B: Methodol. 41(6), 670–683 (2007)CrossRefGoogle Scholar
  22. 22.
    Lariviere, M.A., Van Mieghem, J.A.: Strategically seeking service: how competition can generate poisson arrivals. Manuf. Serv. Oper. Manag. 6(1), 23–40 (2004)CrossRefGoogle Scholar
  23. 23.
    Levinson, D.: Micro-foundations of congestion and pricing: a game theory perspective. Transp. Res. Part A: Policy Pract. 39(7), 691–704 (2005)Google Scholar
  24. 24.
    Lingenbrink, D., Iyer, K.: Optimal signaling mechanisms in unobservable queues with strategic customers. In: Proceedings of the 2017 ACM Conference on Economics and Computation (EC), pp. 347–347. ACM (2017)Google Scholar
  25. 25.
    Naor, P.: The regulation of queue size by levying tolls. Econometrica 37(1), 15–24 (1969)CrossRefGoogle Scholar
  26. 26.
    Otsubo, H., Rapoport, A.: Vickrey’s model of traffic congestion discretized. Transp. Res. Part B: Methodol. 42(10), 873–889 (2008)CrossRefGoogle Scholar
  27. 27.
    Rapoport, A., Stein, W.E., Parco, J.E., Seale, D.A.: Equilibrium play in single-server queues with endogenously determined arrival times. J. Econ. Behav. Organ. 55(1), 67–91 (2004)CrossRefGoogle Scholar
  28. 28.
    Roughgarden, T.: Selfish routing with atomic players. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1184–1185 (2005)Google Scholar
  29. 29.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM (JACM) 49(2), 236–259 (2002)MathSciNetCrossRefGoogle Scholar
  30. 30.
    van den Berg, V., Verhoef, E.T.: Congestion tolling in the bottleneck model with heterogeneous values of time. Transp. Res. Part B: Methodol. 45(1), 60–78 (2011)CrossRefGoogle Scholar
  31. 31.
    Vickrey, W.S.: Congestion theory and transport investment. Am. Econ. Rev. 59, 251–260 (1969)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Microsoft ResearchHerzliyaIsrael
  2. 2.Ben-Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations