Advertisement

Equilibria in Routing Games with Edge Priorities

  • Robert SchefflerEmail author
  • Martin Strehler
  • Laura Vargas Koch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11316)

Abstract

In this paper, we present a new routing model with edge priorities. We consider network users that route packages selfishly through a network over time and try to reach their destinations as fast as possible. If the number of packages that want to enter an edge at the same time exceeds the inflow capacity of this edge, edge priorities with respect to the preceding edge solve these conflicts. For this class of games, we show the existence of equilibrium solutions for single-source-single-sink games and we analyze structural properties of these solutions. We present an algorithm that computes Nash equilibria and we prove bounds both on the Price of Stability and on the Price of Anarchy. Moreover, we introduce the new concept of the Price of Mistrust and analyze the connection to earliest arrival flows.

Keywords

Routing game Algorithmic game theory Pure Nash equilibria Edge priorities Price of Mistrust 

References

  1. 1.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 57–66. ACM (2005)Google Scholar
  3. 3.
    Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cao, Z., Chen, B., Chen, X., Wang, C.: A network game of dynamic traffic. arXiv preprint arXiv:1705.01784 (2017)
  5. 5.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 67–73. ACM (2005)Google Scholar
  6. 6.
    Cominetti, R., Correa, J.R., Larré, O.: Existence and uniqueness of equilibria for flows over time. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 552–563. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22012-8_44CrossRefzbMATHGoogle Scholar
  7. 7.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959).  https://doi.org/10.1007/BF01386390MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6, 419–433 (1958)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ford, L.R., Fulkerson, D.R.: Flow in Networks. Princeton University Press, Princeton (1962)zbMATHGoogle Scholar
  10. 10.
    Gale, D.: Transient flows in networks. Mich. Math. J. 6, 59–63 (1959)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Harks, T., Peis, B., Schmand, D., Koch, L.V.: Competitive packet routing with priority lists. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) 41st MFCS 2016. LIPIcs, vol. 58, pp. 49:1–49:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hoefer, M., Mirrokni, V.S., Röglin, H., Teng, S.-H.: Competitive routing over time. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 18–29. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10841-9_4CrossRefGoogle Scholar
  13. 13.
    Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 323–334. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04645-2_29CrossRefGoogle Scholar
  14. 14.
    Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theory Comput. Syst. 49(1), 71–97 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49116-3_38CrossRefGoogle Scholar
  16. 16.
    Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory, vol. 1. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  17. 17.
    Rosenthal, R.W.: The network equilibrium problem in integers. Networks 3(1), 53–59 (1973)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM (JACM) 49(2), 236–259 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Scheffler, R., Strehler, M., Koch, L.V.: Nash equilibria in routing games with edge priorities. arXiv preprint arXiv:1803.00865 (2018)
  20. 20.
    Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Berlin Heidelberg (2009).  https://doi.org/10.1007/978-3-540-76796-1_21CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Robert Scheffler
    • 1
    Email author
  • Martin Strehler
    • 1
  • Laura Vargas Koch
    • 2
  1. 1.BTU Cottbus-SenftenbergCottbusGermany
  2. 2.RWTH AachenAachenGermany

Personalised recommendations