Equilibrium and Inefficiency in Multi-product Cournot Games

  • Mohit HotaEmail author
  • Sanjiv Kapoor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11316)


We consider multi-product (m products) Cournot games played by n firms where products are substitutable goods. Such games can arise in network markets and in general is motivated by markets with differentiated goods and differing producer costs that can be arbitrary, especially due to subsidies. We provide strongly polynomial algorithms for computing the Nash equilibrium for Cournot games with quadratic utility functions. To study the inefficiency, we provide a characterization of Nash equilibrium in multi-product oligopolies with concave utilities and uniform substitutability in terms of games with quadratic utilities. We show that the Price of Anarchy in these games is bounded below by 2/3.



The research was supported in part by NSF grant: CCF-1451574.


  1. 1.
    Abolhassani, M., Bateni, M.H., Hajiaghayi, M.T., Mahini, H., Sawant, A.: Network Cournot competition. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 15–29. Springer, Cham (2014). Scholar
  2. 2.
    Altman, E., Rojas, J., Wong, S., Hanawal, M.K., Xu, Y.: Net neutrality and quality of service. In: Jain, R., Kannan, R. (eds.) GameNets 2011. LNICST, vol. 75, pp. 137–152. Springer, Heidelberg (2012). Scholar
  3. 3.
  4. 4.
    Cowling, K., Waterson, M.: Price-cost margins and market structure. Economica 43(171), 267–274 (1976)CrossRefGoogle Scholar
  5. 5.
    Deneckere, R., Kovenock, D.: Direct demand-based Cournot existence and uniqueness conditions. Technical report, Purdue University, mimeo (1999)Google Scholar
  6. 6.
    Deneckere, R., Davidson, C.: Incentives to form coalitions with Bertrand competition. RAND J. Econ. 16, 473–486 (1985)CrossRefGoogle Scholar
  7. 7.
    Eckel, C., Neary, J.P.: Multi-product firms and flexible manufacturing in the global economy. Rev. Econ. Stud. 77(1), 188–217 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Farrell, J., Shapiro, C.: Horizontal mergers: an equilibrium analysis. Am. Econ. Rev. 80, 107–126 (1990)Google Scholar
  9. 9.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)zbMATHGoogle Scholar
  10. 10.
    Granados, N.: Binge away: AT&T launches HBO bundle, going head-to-head with t-mobile-netflix plan (2017).
  11. 11.
    Guo, X., Yang, H.: The price of anarchy of Cournot oligopoly. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 246–257. Springer, Heidelberg (2005). Scholar
  12. 12.
    Hota, M., Kapoor, S.: Equilibrium and inefficiency in multi-product Cournot games.
  13. 13.
    Immorlica, N., Markakis, E., Piliouras, G.: Coalition formation and price of anarchy in Cournot oligopolies. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 270–281. Springer, Heidelberg (2010). Scholar
  14. 14.
    Joe-Wong, C., Ha, S., Chiang, M.: Sponsoring mobile data: an economic analysis of the impact on users and content providers. In: IEEE Conference on Computer Communications, Infocom 2015, pp. 1499–1507. IEEE (2015)Google Scholar
  15. 15.
    Johari, R.: Efficiency loss in market mechanisms for resource allocation. Ph.D. thesis, Massachusetts Institute of Technology (2004)Google Scholar
  16. 16.
    Johari, R., Tsitsiklis, J.N.: Efficiency loss in Cournot games. Harvard University (2005)Google Scholar
  17. 17.
    Johnson, J.P., Myatt, D.P.: Multiproduct Cournot oligopoly. RAND J. Econ. 37(3), 583–601 (2006)CrossRefGoogle Scholar
  18. 18.
    Kluberg, J., Perakis, G.: Generalized quantity competition for multiple products and loss of efficiency. Oper. Res. 60(2), 335–350 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). Scholar
  20. 20.
    Kuleshov, V., Wilfong, G.: On the efficiency of the simplest pricing mechanisms in two-sided markets. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 284–297. Springer, Heidelberg (2012). Scholar
  21. 21.
    Ledvina, A., Sircar, R.: Oligopoly games under asymmetric costs and an application to energy production. Math. Financ. Econ. 6(4), 261–293 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    McManus, M.: Equilibrium, numbers and size in Cournot oligopoly. Bull. Econ. Res. 16(2), 68–75 (1964)CrossRefGoogle Scholar
  23. 23.
    Okuguchi, K., Szidarovszky, F.: On the existence and computation of equilibrium points for an oligopoly game with multi-product firms. Annales, Univ. Sci. bud. Roi. Fotvos Nom (1985)Google Scholar
  24. 24.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM (JACM) 49(2), 236–259 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Salant, S.W., Switzer, S., Reynolds, R.J.: Losses from horizontal merger: the effects of an exogenous change in industry structure on Cournot-Nash equilibrium. Q. J. Econ. 98(2), 185–199 (1983)CrossRefGoogle Scholar
  26. 26.
    Singh, N., Vives, X.: Price and quantity competition in a differentiated duopoly. RAND J. Econ. 15, 546–554 (1984)CrossRefGoogle Scholar
  27. 27.
    Timmermans, V., Harks, T.: Equilibrium computation in resource allocation games. arXiv preprint arXiv:1612.00190 (2016)
  28. 28.
    Tsitsiklis, J.N., Xu, Y.: Profit loss in Cournot oligopolies. Oper. Res. Lett. 41(4), 415–420 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tsitsiklis, J.N., Xu, Y.: Efficiency loss in a Cournot oligopoly with convex market demand. J. Math. Econ. 53, 46–58 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Vives, X.: Oligopoly Pricing: Old Ideas and New Tools. MIT Press, Cambridge (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Illinois Institute of TechnologyChicagoUSA

Personalised recommendations