Skip to main content

Clinical Aspects of Estrogen and Progesterone Receptors and ERBB2 Testing

  • Chapter
  • First Online:
Breast Disease
  • 1043 Accesses

Abstract

Human breast cancers depend on estrogen and/or progesterone for growth, and these effects are mediated through estrogen receptors (ERs) and progesterone receptors (PRs), respectively. The human epidermal growth factor receptor 2 (HER2) gene encodes a member of the epidermal growth factor receptor family of receptor tyrosine kinases, and its amplification with resultant overexpression plays a major role in sustaining multiple pathways in cancer growth. ERs, PRs, and HER2 status are the most important molecular markers in the standard care of all primary and recurrent/metastatic breast cancer patients and play both predictive and prognostic roles. The responsiveness of a tumor to hormone therapy is an important parameter in breast cancer management in both adjuvant and metastatic settings. Only breast cancers with HER2 amplification or overexpression respond to HER2-directed therapies. Hormonal status of the tumor is prognostic for patient outcome and site of metastasis. Hormonal receptor-positive disease represents an indolent and slowly growing tumor with longer time to disease recurrence. HER2 is a poor prognostic factor in the absence of HER2-directed therapies. Assessment of the ER/PR/HER2 status is an essential factor in the evaluation of every newly diagnosed breast cancer, and standardization of the assay methods is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zumoff B, Fishman J, Bradlow HL, Hellman L. Hormone profiles in hormone-dependent cancers. Cancer Res. 1975;35:3365–73.

    CAS  PubMed  Google Scholar 

  2. Stockwell S. Classics in oncology. George Thomas Beatson, M.D. (1848–1933). CA Cancer J Clin. 1983;33:105–21.

    Article  CAS  PubMed  Google Scholar 

  3. Boyd S. On oophorectomy in cancer of breast. Br Med J. 1900;2:1961–7.

    Google Scholar 

  4. Jensen EV, Jordan VC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003;9:1980–9.

    CAS  PubMed  Google Scholar 

  5. Allen E, Doisy EA. Landmark article Sept 8, 1923. An ovarian hormone. Preliminary report on its localization, extraction and partial purification, and action in test animals. By Edgar Allen and Edward A. Doisy. JAMA. 1983;250:2681–3.

    Article  CAS  PubMed  Google Scholar 

  6. Jensen EV, Block GE, Smith S, Kyser K, DeSombre ER. Estrogen receptors and breast cancer response to adrenalectomy. Natl Cancer Inst Monogr. 1971;34:55–70.

    CAS  PubMed  Google Scholar 

  7. McGuire WLC, Carbone PP, Wollmer EP. Estrogen receptors in human breast cancer. New York: Raven; 1975.

    Google Scholar 

  8. Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Asp Med. 2006;27:299–402.

    Article  CAS  Google Scholar 

  9. Ali S, Coombes RC. Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia. 2000;5:271–81.

    Article  CAS  PubMed  Google Scholar 

  10. Helguero LA, Faulds MH, Gustafsson JA, Haldosen LA. Estrogen receptors alfa (Eralpha) and beta (Erbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene. 2005;24:6605–16.

    Article  CAS  PubMed  Google Scholar 

  11. Renoir JM, Marsaud V, Lazennec G. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol. 2013;85:449–65.

    Article  CAS  PubMed  Google Scholar 

  12. Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29:2905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997;18:306–60.

    CAS  PubMed  Google Scholar 

  14. Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23:1616–22.

    Article  CAS  PubMed  Google Scholar 

  15. Osborne CK, Schiff R, Fuqua SA, Shou J. Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res. 2001;7:4338s–42; discussion 411s–2s

    CAS  PubMed  Google Scholar 

  16. Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell. 2003;115:751–63.

    Article  CAS  PubMed  Google Scholar 

  17. Lonard DM, O’Malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007;27:691–700.

    Article  CAS  PubMed  Google Scholar 

  18. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–9.

    Article  CAS  PubMed  Google Scholar 

  19. O’Malley BW. Coregulators: from whence came these “master genes”. Mol Endocrinol. 2007;21:1009–13.

    Article  PubMed  CAS  Google Scholar 

  20. Heger Z, Guran R, Zitka O, Beklova M, Adam V, Kizek R. In vitro interactions between 17beta-estradiol and DNA result in formation of the hormone-DNA complexes. Int J Environ Res Public Health. 2014;11:7725–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.

    Article  CAS  PubMed  Google Scholar 

  22. Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL, Leitman DC. Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res. 2004;64:423–8.

    Article  CAS  PubMed  Google Scholar 

  23. Strom A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson JA. Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci U S A. 2004;101:1566–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gougelet A, Bouclier C, Marsaud V, Maillard S, Mueller SO, Korach KS, et al. Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and immunophilin-ligands in human breast cancer cells. J Steroid Biochem Mol Biol. 2005;94:71–81.

    Article  CAS  PubMed  Google Scholar 

  25. Grober OM, Mutarelli M, Giurato G, Ravo M, Cicatiello L, De Filippo MR, et al. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genomics. 2011;12:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matthews J, Gustafsson JA. Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv. 2003;3:281–92.

    Article  CAS  PubMed  Google Scholar 

  27. Arnold SF, Obourn JD, Jaffe H, Notides AC. Phosphorylation of the human estrogen receptor by mitogen-activated protein kinase and casein kinase II: consequence on DNA binding. J Steroid Biochem Mol Biol. 1995;55:163–72.

    Article  CAS  PubMed  Google Scholar 

  28. Rogatsky I, Trowbridge JM, Garabedian MJ. Potentiation of human estrogen receptor alpha transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J Biol Chem. 1999;274:22296–302.

    Article  CAS  PubMed  Google Scholar 

  29. Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, et al. Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene. 2002;21:4921–31.

    Article  CAS  PubMed  Google Scholar 

  30. Lee H, Bai W. Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol Cell Biol. 2002;22:5835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joel PB, Smith J, Sturgill TW, Fisher TL, Blenis J, Lannigan DA. Pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol. 1998;18:1978–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen D, Pace PE, Coombes RC, Ali S. Phosphorylation of human estrogen receptor alpha by protein kinase A regulates dimerization. Mol Cell Biol. 1999;19:1002–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cui Y, Zhang M, Pestell R, Curran EM, Welshons WV, Fuqua SA. Phosphorylation of estrogen receptor alpha blocks its acetylation and regulates estrogen sensitivity. Cancer Res. 2004;64:9199–208.

    Article  CAS  PubMed  Google Scholar 

  34. Wang RA, Mazumdar A, Vadlamudi RK, Kumar R. P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J. 2002;21:5437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA. Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol. 2006;20:3120–32.

    Article  CAS  PubMed  Google Scholar 

  36. Clemm DL, Sherman L, Boonyaratanakornkit V, Schrader WT, Weigel NL, Edwards DP. Differential hormone-dependent phosphorylation of progesterone receptor A and B forms revealed by a phosphoserine site-specific monoclonal antibody. Mol Endocrinol. 2000;14:52–65.

    Article  CAS  PubMed  Google Scholar 

  37. Daniel AR, Qiu M, Faivre EJ, Ostrander JH, Skildum A, Lange CA. Linkage of progestin and epidermal growth factor signaling: phosphorylation of progesterone receptors mediates transcriptional hypersensitivity and increased ligand-independent breast cancer cell growth. Steroids. 2007;72:188–201.

    Article  CAS  PubMed  Google Scholar 

  38. Fuqua SA, Wiltschke C, Zhang QX, Borg A, Castles CG, Friedrichs WE, et al. A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res. 2000;60:4026–9.

    CAS  PubMed  Google Scholar 

  39. Herynk MH, Parra I, Cui Y, Beyer A, Wu MF, Hilsenbeck SG, et al. Association between the estrogen receptor alpha A908G mutation and outcomes in invasive breast cancer. Clin Cancer Res. 2007;13:3235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Conway K, Parrish E, Edmiston SN, Tolbert D, Tse CK, Geradts J, et al. The estrogen receptor-alpha A908G (K303R) mutation occurs at a low frequency in invasive breast tumors: results from a population-based study. Breast Cancer Res. 2005;7:R871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma CX, Ellis MJ. The Cancer Genome Atlas: clinical applications for breast cancer. Oncology (Williston Park). 2013;27:1263–9, 74–9.

    Google Scholar 

  42. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  CAS  Google Scholar 

  43. Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015;12:573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Toy W, Shen Y, Won H, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45:1439–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chandarlapaty S, Chen D, He W, et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: A secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol. 2016;2(10):1310–5. https://doi.org/10.1001/jamaoncol.2016.1279.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Niu J, Andres G, Kramer K, et al. Incidence and clinical significance of ESR1 mutations in heavily pretreated metastatic breast cancer patients. Onco Targets Ther. 2015;8:3323–8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pietras RJ, Szego CM. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature. 1977;265:69–72.

    Article  CAS  PubMed  Google Scholar 

  48. Moriarty K, Kim KH, Bender JR. Minireview: estrogen receptor-mediated rapid signaling. Endocrinology. 2006;147:5557–63.

    Article  CAS  PubMed  Google Scholar 

  49. Wehling M, Losel R. Non-genomic steroid hormone effects: membrane or intracellular receptors? J Steroid Biochem Mol Biol. 2006;102:180–3.

    Article  CAS  PubMed  Google Scholar 

  50. Li L, Haynes MP, Bender JR. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc Natl Acad Sci U S A. 2003;100:4807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci U S A. 2006;103:9063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Levin ER, Pietras RJ. Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat. 2008;108:351–61.

    Article  CAS  PubMed  Google Scholar 

  53. Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol. 2002;80:231–8.

    Article  CAS  PubMed  Google Scholar 

  54. Filardo EJ, Quinn JA, Sabo E. Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor. Steroids. 2008;73:870–3.

    Article  CAS  PubMed  Google Scholar 

  55. Song RX, Zhang Z, Chen Y, Bao Y, Santen RJ. Estrogen signaling via a linear pathway involving insulin-like growth factor I receptor, matrix metalloproteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase in MCF-7 breast cancer cells. Endocrinology. 2007;148:4091–101.

    Article  CAS  PubMed  Google Scholar 

  56. Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R, et al. Linkage of rapid estrogen action to MAPK activation by Eralpha-Shc association and Shc pathway activation. Mol Endocrinol. 2002;16:116–27.

    CAS  PubMed  Google Scholar 

  57. Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, et al. Nongenomic steroid action: controversies, questions, and answers. Physiol Rev. 2003;83:965–1016.

    Article  PubMed  Google Scholar 

  58. Chen JQ, Yager JD, Russo J. Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta. 2005;1746:1–17.

    Article  CAS  PubMed  Google Scholar 

  59. Pedram A, Razandi M, Wallace DC, Levin ER. Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell. 2006;17:2125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boonyaratanakornkit V, McGowan E, Sherman L, Mancini MA, Cheskis BJ, Edwards DP. The role of extranuclear signaling actions of progesterone receptor in mediating progesterone regulation of gene expression and the cell cycle. Mol Endocrinol. 2007;21:359–75.

    Article  CAS  PubMed  Google Scholar 

  61. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.

    Article  CAS  PubMed  Google Scholar 

  62. Stoica GE, Franke TF, Moroni M, Mueller S, Morgan E, Iann MC, et al. Effect of estradiol on estrogen receptor-alpha gene expression and activity can be modulated by the ErbB2/PI 3-K/Akt pathway. Oncogene. 2003;22:7998–8011.

    Article  PubMed  CAS  Google Scholar 

  63. Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res. 2004;10:331S–6.

    Article  CAS  PubMed  Google Scholar 

  64. Anderson WF, Chatterjee N, Ershler WB, Brawley OW. Estrogen receptor breast cancer phenotypes in the surveillance, epidemiology, and end results database. Breast Cancer Res Treat. 2002;76:27–36.

    Article  CAS  PubMed  Google Scholar 

  65. Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. Lancet. 2005;365:1687–717.

    Article  CAS  Google Scholar 

  66. Nadji M, Gomez-Fernandez C, Ganjei-Azar P, Morales AR. Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast cancers. Am J Clin Pathol. 2005;123:21–7.

    Article  PubMed  Google Scholar 

  67. Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark GM. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol. 2003;21:1973–9.

    Article  CAS  PubMed  Google Scholar 

  68. Arisio R, Sapino A, Cassoni P, Accinelli G, Cuccorese MC, Mano MP, et al. What modifies the relation between tumour size and lymph node metastases in T1 breast carcinomas? J Clin Pathol. 2000;53:846–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manni A, Arafah B, Pearson OH. Estrogen and progesterone receptors in the prediction of response of breast cancer to endocrine therapy. Cancer. 1980;46:2838–41.

    Article  CAS  PubMed  Google Scholar 

  70. Bezwoda WR, Esser JD, Dansey R, Kessel I, Lange M. The value of estrogen and progesterone receptor determinations in advanced breast cancer. Estrogen receptor level but not progesterone receptor level correlates with response to tamoxifen. Cancer. 1991;68:867–72.

    Article  CAS  PubMed  Google Scholar 

  71. McClelland RA, Berger U, Miller LS, Powles TJ, Coombes RC. Immunocytochemical assay for estrogen receptor in patients with breast cancer: relationship to a biochemical assay and to outcome of therapy. J Clin Oncol. 1986;4:1171–6.

    Article  CAS  PubMed  Google Scholar 

  72. Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A, et al. Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol. 2003;21:2101–9.

    Article  CAS  PubMed  Google Scholar 

  73. Dodwell D, Wardley A, Johnston S. Postmenopausal advanced breast cancer: options for therapy after tamoxifen and aromatase inhibitors. Breast. 2006;15:584–94.

    Article  CAS  PubMed  Google Scholar 

  74. Buzdar A, Jonat W, Howell A, Jones SE, Blomqvist C, Vogel CL, et al. Anastrozole, a potent and selective aromatase inhibitor, versus megestrol acetate in postmenopausal women with advanced breast cancer: results of overview analysis of two phase III trials. Arimidex Study Group. J Clin Oncol. 1996;14:2000–11.

    Article  CAS  PubMed  Google Scholar 

  75. Lonning PE, Taylor PD, Anker G, Iddon J, Wie L, Jørgensen LM, et al. High-dose estrogen treatment in postmenopausal breast cancer patients heavily exposed to endocrine therapy. Breast Cancer Res Treat. 2001;67:111–6.

    Article  CAS  PubMed  Google Scholar 

  76. Buzdar AU, Vergote I, Sainsbury R. The impact of hormone receptor status on the clinical efficacy of the new-generation aromatase inhibitors: a review of data from first-line metastatic disease trials in postmenopausal women. Breast J. 2004;10:211–7.

    Article  CAS  PubMed  Google Scholar 

  77. Elledge RM, Green S, Pugh R, Allred DC, Clark GM, Hill J, et al. Estrogen receptor (ER) and progesterone receptor (PgR), by ligand-binding assay compared with ER, PgR and pS2, by random-histochemistry in predicting response to tamoxifen in metastatic breast cancer: a Southwest Oncology Group Study. Int J Cancer. 2000;89:111–7.

    Article  CAS  PubMed  Google Scholar 

  78. Ravdin PM, Green S, Dorr TM, McGuire WL, Fabian C, Pugh RP, et al. Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. J Clin Oncol. 1992;10:1284–91.

    Article  CAS  PubMed  Google Scholar 

  79. Pertschuk LP, Feldman JG, Eisenberg KB, Carter AC, Thelmo WL, Cruz WP, et al. Immunocytochemical detection of progesterone receptor in breast cancer with monoclonal antibody. Relation to biochemical assay, disease-free survival, and clinical endocrine response. Cancer. 1988;62:342–9.

    Article  CAS  PubMed  Google Scholar 

  80. Spataro V, Price K, Goldhirsch A, Cavalli F, Simoncini E, Castiglione M, et al. Sequential estrogen receptor determinations from primary breast cancer and at relapse: prognostic and therapeutic relevance. The International Breast Cancer Study Group (formerly Ludwig Group). Ann Oncol. 1992;3:733–40.

    Article  CAS  PubMed  Google Scholar 

  81. Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol. 1996;14:2584–9.

    Article  CAS  PubMed  Google Scholar 

  82. Lower EE, Glass EL, Bradley DA, Blau R, Heffelfinger S. Impact of metastatic estrogen receptor and progesterone receptor status on survival. Breast Cancer Res Treat. 2005;90:65–70.

    Article  CAS  PubMed  Google Scholar 

  83. Sari E, Guler G, Hayran M, Gullu I, Altundag K, Ozisik Y. Comparative study of the immunohistochemical detection of hormone receptor status and HER-2 expression in primary and paired recurrent/metastatic lesions of patients with breast cancer. Med Oncol. 2011;28:57–63.

    Article  CAS  PubMed  Google Scholar 

  84. Arslan C, Sari E, Aksoy S, Altundag K. Variation in hormone receptor and HER-2 status between primary and metastatic breast cancer: review of the literature. Expert Opin Ther Targets. 2011;15:21–30.

    Article  CAS  PubMed  Google Scholar 

  85. Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC, et al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol. 2005;23:2469–76.

    Article  CAS  PubMed  Google Scholar 

  86. Gross GE, Clark GM, Chamness GC, McGuire WL. Multiple progesterone receptor assays in human breast cancer. Cancer Res. 1984;44:836–40.

    CAS  PubMed  Google Scholar 

  87. Bieche I, Lidereau R. Genetic alterations in breast cancer. Genes Chromosomes Cancer. 1995;14:227–51.

    Article  CAS  PubMed  Google Scholar 

  88. Teixeira MR, Pandis N, Bardi G, Andersen JA, Mitelman F, Heim S. Clonal heterogeneity in breast cancer: karyotypic comparisons of multiple intra- and extra-tumorous samples from 3 patients. Int J Cancer. 1995;63:63–8.

    Article  CAS  PubMed  Google Scholar 

  89. Hutchins LF, Green SJ, Ravdin PM, Lew D, Martino S, Abeloff M, et al. Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of Intergroup Protocol INT-0102. J Clin Oncol. 2005;23:8313–21.

    Article  CAS  PubMed  Google Scholar 

  90. Fisher B, Anderson S, Tan-Chiu E, Tan-Chiu E, Wolmark N, Wickerham DL, et al. Tamoxifen and chemotherapy for axillary node-negative, estrogen receptor-negative breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-23. J Clin Oncol. 2001;19:931–42.

    Article  CAS  PubMed  Google Scholar 

  91. Dowsett M, Allred C, Knox J, Quinn E, Salter J, Wale C, et al. Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial. J Clin Oncol. 2008;26:1059–65.

    Article  CAS  PubMed  Google Scholar 

  92. Viale G, Regan MM, Maiorano E, Mastropasqua MG, Dell’Orto P, Rasmussen BB, et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J Clin Oncol. 2007;25:3846–52.

    Article  PubMed  Google Scholar 

  93. Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomized trials. Lancet. 1998;351:1451–67.

    Article  Google Scholar 

  94. De Maeyer L, Van Limbergen E, De Nys K, Moerman P, Pochet N, Hendrickx W, et al. Does estrogen receptor negative/progesterone receptor positive breast carcinoma exist? J Clin Oncol. 2008;26:335–6; author reply 6–8

    Article  PubMed  Google Scholar 

  95. Rakha EA, El-Sayed ME, Green AR, Paish EC, Powe DG, Gee J, et al. Biologic and clinical characteristics of breast cancer with single hormone receptor positive phenotype. J Clin Oncol. 2007;25:4772–8.

    Article  PubMed  Google Scholar 

  96. Dunnwald LK, Rossing MA, Li CI. Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res. 2007;9:R6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Dowsett M, Houghton J, Iden C, Salter J, Farndon J, A’Hern R, et al. Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol. 2006;17:818–26.

    Article  CAS  PubMed  Google Scholar 

  98. Ferno M, Stal O, Baldetorp B, Hatschek T, Källström AC, Malmström P, et al. Results of two or five years of adjuvant tamoxifen correlated to steroid receptor and S-phase levels. South Sweden Breast Cancer Group, and South-East Sweden Breast Cancer Group. Breast Cancer Res Treat. 2000;59:69–76.

    Article  CAS  PubMed  Google Scholar 

  99. Lamy PJ, Pujol P, Thezenas S, Kramar A, Rouanet P, Guilleux F, et al. Progesterone receptor quantification as a strong prognostic determinant in postmenopausal breast cancer women under tamoxifen therapy. Breast Cancer Res Treat. 2002;76:65–71.

    Article  CAS  PubMed  Google Scholar 

  100. Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ, et al. Efficacy of letrozole extended adjuvant therapy according to estrogen receptor and progesterone receptor status of the primary tumor: National Cancer Institute of Canada Clinical Trials Group MA.17. J Clin Oncol. 2007;25:2006–11.

    Article  CAS  PubMed  Google Scholar 

  101. Sparano JA, Paik S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol. 2008;26:721–8.

    Article  PubMed  Google Scholar 

  102. Andre F, Broglio K, Roche H, Martin M, Mackey JR, Penault-Llorca F, et al. Estrogen receptor expression and efficacy of docetaxel-containing adjuvant chemotherapy in patients with node-positive breast cancer: results from a pooled analysis. J Clin Oncol. 2008;26:2636–43.

    Article  CAS  PubMed  Google Scholar 

  103. Martin M, Pienkowski T, Mackey J, Pawlicki M, Guastalla JP, Weaver C, et al. Adjuvant docetaxel for node-positive breast cancer. N Engl J Med. 2005;352:2302–13.

    Article  CAS  PubMed  Google Scholar 

  104. De Laurentiis M, Cancello G, D’Agostino D, Giuliano M, Giordano A, Montagna E, et al. Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol. 2008;26:44–53.

    Article  PubMed  CAS  Google Scholar 

  105. Henry NL, Hayes DF. Can biology trump anatomy? Do all node-positive patients with breast cancer need chemotherapy? J Clin Oncol. 2007;25:2501–3.

    Article  CAS  PubMed  Google Scholar 

  106. Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA. 2006;295:1658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hayes DF, Thor AD, Dressler LG, Weaver D, Edgerton S, Cowan D, et al. HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med. 2007;357:1496–506.

    Article  CAS  PubMed  Google Scholar 

  108. Mazouni C, Kau SW, Frye D, Andre F, Kuerer HM, Buchholz TA, et al. Inclusion of taxanes, particularly weekly paclitaxel, in preoperative chemotherapy improves pathologic complete response rate in estrogen receptor-positive breast cancers. Ann Oncol. 2007;18:874–80.

    Article  CAS  PubMed  Google Scholar 

  109. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  110. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    Article  CAS  PubMed  Google Scholar 

  111. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomized trial. Lancet Oncol. 2010;11:55–65.

    Article  CAS  PubMed  Google Scholar 

  112. Brodie A, Sabnis G. Adaptive changes result in activation of alternate signaling pathways and acquisition of resistance to aromatase inhibitors. Clin Cancer Res. 2011;17:4208–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Miller TW, Rexer BN, Garrett JT, Arteaga CL. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 2011;13:224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu J, Li HQ, Zhou FX, Yu JW, Han ZH. Targeting the mTOR pathway in breast cancer. Tumour Biol. 2017;39:1010428317710825.

    PubMed  Google Scholar 

  115. Beaver JA, Park BH. The BOLERO-2 trial: the addition of everolimus to exemestane in the treatment of postmenopausal hormone receptor-positive advanced breast cancer. Future Oncol. 2012;8:651–7.

    Article  CAS  PubMed  Google Scholar 

  116. Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Miller TW, Balko JM, Fox EM, Ghazoui Z, Dunbier A, Anderson H, et al. ERalpha-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov. 2011;1:338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17:425–39.

    Article  CAS  PubMed  Google Scholar 

  119. Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375:1925–36.

    Article  CAS  PubMed  Google Scholar 

  120. Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375:1738–48.

    Article  CAS  PubMed  Google Scholar 

  121. Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35:3638–46.

    Article  CAS  PubMed  Google Scholar 

  122. Ramos-Esquivel A, Hernandez-Steller H, Savard MF, Landaverde DU. Cyclin-dependent kinase 4/6 inhibitors as first-line treatment for post-menopausal metastatic hormone receptor-positive breast cancer patients: a systematic review and meta-analysis of phase III randomized clinical trials. Breast Cancer. 2018;25:479–88.

    Article  PubMed  Google Scholar 

  123. Crowe JP, Hubay CA, Pearson OH, Marshall JS, Rosenblatt J, Mansour EG, et al. Estrogen receptor status as a prognostic indicator for stage I breast cancer patients. Breast Cancer Res Treat. 1982;2:171–6.

    Article  CAS  PubMed  Google Scholar 

  124. Fisher B, Redmond C, Fisher ER, Caplan R. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from national surgical adjuvant breast and bowel project protocol B-06. J Clin Oncol. 1988;6:1076–87.

    Article  CAS  PubMed  Google Scholar 

  125. Costa SD, Lange S, Klinga K, Merkle E, Kaufmann M. Factors influencing the prognostic role of oestrogen and progesterone receptor levels in breast cancer – results of the analysis of 670 patients with 11 years of follow-up. Eur J Cancer. 2002;38:1329–34.

    Article  CAS  PubMed  Google Scholar 

  126. Hilsenbeck SG, Ravdin PM, de Moor CA, Chamness GC, Osborne CK, Clark GM. Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat. 1998;52:227–37.

    Article  CAS  PubMed  Google Scholar 

  127. Schmitt M, Thomssen C, Ulm K, Seiderer A, Harbeck N, Höfler H, et al. Time-varying prognostic impact of tumour biological factors urokinase (uPA), PAI-1 and steroid hormone receptor status in primary breast cancer. Br J Cancer. 1997;76:306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Diab SG, Elledge RM, Clark GM. Tumor characteristics and clinical outcome of elderly women with breast cancer. J Natl Cancer Inst. 2000;92:550–6.

    Article  CAS  PubMed  Google Scholar 

  129. Fisher ER, Osborne CK, McGuire WL, Redmond C, Knight WA, Fisher B, et al. Correlation of primary breast cancer histopathology and estrogen receptor content. Breast Cancer Res Treat. 1981;1:37–41.

    Article  CAS  PubMed  Google Scholar 

  130. Wenger CR, Beardslee S, Owens MA, Pounds G, Oldaker T, Vendely P, et al. DNA ploidy, S-phase, and steroid receptors in more than 127,000 breast cancer patients. Breast Cancer Res Treat. 1993;28:9–20.

    Article  CAS  PubMed  Google Scholar 

  131. Elledge RM, Fuqua SA, Clark GM, Pujol P, Allred DC, McGuire WL. Prognostic significance of p53 gene alterations in node-negative breast cancer. Breast Cancer Res Treat. 1993;26:225–35.

    Article  CAS  PubMed  Google Scholar 

  132. Hess KR, Pusztai L, Buzdar AU, Hortobagyi GN. Estrogen receptors and distinct patterns of breast cancer relapse. Breast Cancer Res Treat. 2003;78:105–18.

    Article  CAS  PubMed  Google Scholar 

  133. Koenders PG, Beex LV, Langens R, Kloppenborg PW, Smals AG, Benraad TJ. Steroid hormone receptor activity of primary human breast cancer and pattern of first metastasis. The breast cancer study group. Breast Cancer Res Treat. 1991;18:27–32.

    Article  CAS  PubMed  Google Scholar 

  134. Nofech-Mozes S, Vella ET, Dhesy-Thind S, Hagerty KL, Mangu PB, Temin S, et al. Systematic review on hormone receptor testing in breast cancer. Appl Immunohistochem Mol Morphol. 2012;20:214–63.

    Article  CAS  PubMed  Google Scholar 

  135. Alberts SR, Ingle JN, Roche PR, Cha SS, Wold LE, Farr GH Jr, et al. Comparison of estrogen receptor determinations by a biochemical ligand-binding assay and immunohistochemical staining with monoclonal antibody ER1D5 in females with lymph node positive breast carcinoma entered on two prospective clinical trials. Cancer. 1996;78:764–72.

    Article  CAS  PubMed  Google Scholar 

  136. Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol. 1999;17:1474–81.

    Article  CAS  PubMed  Google Scholar 

  137. Thomson CS, Twelves CJ, Mallon EA, Leake RE. Scottish cancer trials breast G, Scottish cancer therapy N. Adjuvant ovarian ablation vs CMF chemotherapy in premenopausal breast cancer patients: trial update and impact of immunohistochemical assessment of ER status. Breast. 2002;11:419–29.

    Article  CAS  PubMed  Google Scholar 

  138. Regan MM, Viale G, Mastropasqua MG, Maiorano E, Golouh R, Carbone A, et al. Re-evaluating adjuvant breast cancer trials: assessing hormone receptor status by immunohistochemical versus extraction assays. J Natl Cancer Inst. 2006;98:1571–81.

    Article  CAS  PubMed  Google Scholar 

  139. Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N, et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics. 2006;7:278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gown AM. Unmasking the mysteries of antigen or epitope retrieval and formalin fixation. Am J Clin Pathol. 2004;121:172–4.

    Article  PubMed  Google Scholar 

  142. Diaz LK, Sneige N. Estrogen receptor analysis for breast cancer: current issues and keys to increasing testing accuracy. Adv Anat Pathol. 2005;12:10–9.

    Article  CAS  PubMed  Google Scholar 

  143. Goldstein NS, Ferkowicz M, Odish E, Mani A, Hastah F. Minimum formalin fixation time for consistent estrogen receptor immunohistochemical staining of invasive breast carcinoma. Am J Clin Pathol. 2003;120:86–92.

    Article  PubMed  Google Scholar 

  144. Taylor CR, Levenson RM. Quantification of immunohistochemistry – issues concerning methods, utility and semiquantitative assessment II. Histopathology. 2006;49:411–24.

    Article  CAS  PubMed  Google Scholar 

  145. Arber DA. Effect of prolonged formalin fixation on the immunohistochemical reactivity of breast markers. Appl Immunohistochem Mol Morphol. 2002;10:183–6.

    PubMed  Google Scholar 

  146. Oh JJ, Grosshans DR, Wong SG, Slamon DJ. Identification of differentially expressed genes associated with HER-2/neu overexpression in human breast cancer cells. Nucleic Acids Res. 1999;27:4008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kumar R, Yarmand-Bagheri R. The role of HER2 in angiogenesis. Semin Oncol. 2001;28:27–32.

    Article  CAS  PubMed  Google Scholar 

  148. Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5:953–62.

    CAS  PubMed  Google Scholar 

  149. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  150. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.

    Article  CAS  PubMed  Google Scholar 

  151. Saffari B, Jones LA, el-Naggar A, Felix JC, George J, Press MF. Amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation with overall survival. Cancer Res. 1995;55:5693–8.

    CAS  PubMed  Google Scholar 

  152. Press MF, Pike MC, Hung G, Zhou JY, Ma Y, George J, Dietz-Band J, et al. Amplification and overexpression of HER-2/neu in carcinomas of the salivary gland: correlation with poor prognosis. Cancer Res. 1994;54:5675–82.

    CAS  PubMed  Google Scholar 

  153. Park JB, Rhim JS, Park SC, Kimm SW, Kraus MH. Amplification, overexpression, and rearrangement of the erbB-2 protooncogene in primary human stomach carcinomas. Cancer Res. 1989;49:6605–9.

    CAS  PubMed  Google Scholar 

  154. Sorkin A, Goh LK. Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res. 2008;314:3093–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    Article  CAS  PubMed  Google Scholar 

  156. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421:756–60.

    Article  CAS  PubMed  Google Scholar 

  157. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16:5276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996;15:2452–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G, et al. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol. 2005;25:11005–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ni CY, Murphy MP, Golde TE, Carpenter G. gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science. 2001;294:2179–81.

    Article  CAS  PubMed  Google Scholar 

  161. Wang SC, Hung MC. Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res. 2009;15:6484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013.

    Article  PubMed  Google Scholar 

  163. Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol. 1997;15:2894–904.

    Article  CAS  PubMed  Google Scholar 

  164. Mass RD, Press MF, Anderson S, Cobleigh MA, Vogel CL, Dybdal N, et al. Evaluation of clinical outcomes according to HER2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin Breast Cancer. 2005;6:240–6.

    Article  PubMed  Google Scholar 

  165. Seidman AD, Berry D, Cirrincione C, Harris L, Muss H, Marcom PK, et al. Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of cancer and leukemia group B protocol 9840. J Clin Oncol. 2008;26:1642–9.

    Article  CAS  PubMed  Google Scholar 

  166. Slamon DJ, Leyland-Jones B, Shak S, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  CAS  PubMed  Google Scholar 

  167. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.

    Article  CAS  PubMed  Google Scholar 

  169. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.

    Article  CAS  PubMed  Google Scholar 

  170. Gianni L, Dafni U, Gelber RD, Azambuja E, Muehlbauer S, Goldhirsch A, et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol. 2011;12:236–44.

    Article  CAS  PubMed  Google Scholar 

  171. Perez EA, Romond EH, Suman VJ, Jeong JH, Davidson NE, Geyer CE Jr, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol. 2011;29:3366–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.

    Article  CAS  PubMed  Google Scholar 

  173. Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.

    Article  CAS  PubMed  Google Scholar 

  174. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dati C, Antoniotti S, Taverna D, Perroteau I, De Bortoli M. Inhibition of c-erbB-2 oncogene expression by estrogens in human breast cancer cells. Oncogene. 1990;5:1001–6.

    CAS  PubMed  Google Scholar 

  176. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat. 1992;24:85–95.

    Article  CAS  PubMed  Google Scholar 

  177. Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 1995;10:2435–46.

    CAS  PubMed  Google Scholar 

  178. Mueller H, Kueng W, Schoumacher F, Herzer S, Eppenberger U. Selective regulation of steroid receptor expression in MCF-7 breast cancer cells by a novel member of the heregulin family. Biochem Biophys Res Commun. 1995;217:1271–8.

    Article  CAS  PubMed  Google Scholar 

  179. Borg A, Baldetorp B, Ferno M, Killander D, Olsson H, Rydén S, et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett. 1994;81:137–44.

    Article  CAS  PubMed  Google Scholar 

  180. Carlomagno C, Perrone F, Gallo C, De Laurentiis M, Lauria R, Morabito A, et al. c-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J Clin Oncol. 1996;14:2702–8.

    Article  CAS  PubMed  Google Scholar 

  181. De Placido S, De Laurentiis M, Carlomagno C, Gallo C, Perrone F, Pepe S, et al. Twenty-year results of the Naples GUN randomized trial: predictive factors of adjuvant tamoxifen efficacy in early breast cancer. Clin Cancer Res. 2003;9:1039–46.

    PubMed  Google Scholar 

  182. De Laurentiis M, Arpino G, Massarelli E, Ruggiero A, Carlomagno C, Ciardiello F, et al. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res. 2005;11:4741–8.

    Article  PubMed  Google Scholar 

  183. Knoop AS, Bentzen SM, Nielsen MM, Rasmussen BB, Rose C. Value of epidermal growth factor receptor, HER2, p53, and steroid receptors in predicting the efficacy of tamoxifen in high-risk postmenopausal breast cancer patients. J Clin Oncol. 2001;19:3376–84.

    Article  CAS  PubMed  Google Scholar 

  184. Berry DA, Muss HB, Thor AD, Dressler L, Liu ET, Broadwater G, et al. HER-2/neu and p53 expression versus tamoxifen resistance in estrogen receptor-positive, node-positive breast cancer. J Clin Oncol. 2000;18:3471–9.

    Article  CAS  PubMed  Google Scholar 

  185. Stal O, Borg A, Ferno M, Källström AC, Malmström P, Nordenskjöld B, et al. ErbB2 status and the benefit from two or five years of adjuvant tamoxifen in postmenopausal early stage breast cancer. Ann Oncol. 2000;11:1545–50.

    Article  CAS  PubMed  Google Scholar 

  186. Love RR, Duc NB, Havighurst TC, Mohsin SK, Zhang Q, DeMets DL, et al. Her-2/neu overexpression and response to oophorectomy plus tamoxifen adjuvant therapy in estrogen receptor-positive premenopausal women with operable breast cancer. J Clin Oncol. 2003;21:453–7.

    Article  CAS  PubMed  Google Scholar 

  187. Ellis MJ, Coop A, Singh B, Mauriac L, Llombert-Cussac A, Jänicke F, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol. 2001;19:3808–16.

    Article  CAS  PubMed  Google Scholar 

  188. Wright C, Nicholson S, Angus B, Sainsbury JR, Farndon J, Cairns J, et al. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer. 1992;65:118–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Leitzel K, Teramoto Y, Konrad K, Chinchilli VM, Volas G, Grossberg H, et al. Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J Clin Oncol. 1995;13:1129–35.

    Article  CAS  PubMed  Google Scholar 

  190. Yamauchi H, O’Neill A, Gelman R, Carney W, Tenney DY, Hösch S, et al. Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol. 1997;15:2518–25.

    Article  CAS  PubMed  Google Scholar 

  191. Lipton A, Ali SM, Leitzel K, Demers L, Harvey HA, Chaudri-Ross HA, et al. Serum HER-2/neu and response to the aromatase inhibitor letrozole versus tamoxifen. J Clin Oncol. 2003;21:1967–72.

    Article  CAS  PubMed  Google Scholar 

  192. Elledge RM, Green S, Ciocca D, Pugh R, Allred DC, Clark GM, et al. HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a Southwest Oncology Group Study. Clin Cancer Res. 1998;4:7–12.

    CAS  PubMed  Google Scholar 

  193. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  CAS  PubMed  Google Scholar 

  194. Pritchard KI, Levine MN, Tu D. neu/erbB-2 overexpression and response to hormonal therapy in premenopausal women in the adjuvant breast cancer setting: will it play in Peoria? part II. J Clin Oncol. 2003;21:399–400.

    Article  PubMed  Google Scholar 

  195. Paik S, Bryant J, Park C, Fisher B, Tan-Chiu E, Hyams D, et al. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst. 1998;90:1361–70.

    Article  CAS  PubMed  Google Scholar 

  196. Paik S, Bryant J, Tan-Chiu E, Yothers G, Park C, Wickerham DL, et al. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-15. J Natl Cancer Inst. 2000;92:1991–8.

    Article  CAS  PubMed  Google Scholar 

  197. Del Mastro L, Bruzzi P, Nicolo G, Cavazzini G, Contu A, D’Amico M, et al. HER2 expression and efficacy of dose-dense anthracycline-containing adjuvant chemotherapy in breast cancer patients. Br J Cancer. 2005;93:7–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Gennari A, Sormani MP, Pronzato P, Puntoni M, Colozza M, Pfeffer U, et al. HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J Natl Cancer Inst. 2008;100:14–20.

    Article  CAS  PubMed  Google Scholar 

  199. Villman K, Sjostrom J, Heikkila R, Hultborn R, Malmström P, Bengtsson NO, et al. TOP2A and HER2 gene amplification as predictors of response to anthracycline treatment in breast cancer. Acta Oncol. 2006;45:590–6.

    Article  CAS  PubMed  Google Scholar 

  200. Press MF, Sauter G, Buyse M, Bernstein L, Guzman R, Santiago A, et al. Alteration of topoisomerase II-alpha gene in human breast cancer: association with responsiveness to anthracycline-based chemotherapy. J Clin Oncol. 2011;29:859–67.

    Article  CAS  PubMed  Google Scholar 

  201. Di Leo A, Desmedt C, Bartlett JM, Piette F, Ejlertsen B, Pritchard KI, et al. HER2 and TOP2A as predictive markers for anthracycline-containing chemotherapy regimens as adjuvant treatment of breast cancer: a meta-analysis of individual patient data. Lancet Oncol. 2011;12:1134–42.

    Article  PubMed  CAS  Google Scholar 

  202. Hayes DF. Steady progress against HER2-positive breast cancer. N Engl J Med. 2011;365:1336–8.

    Article  CAS  PubMed  Google Scholar 

  203. Konecny GE, Thomssen C, Luck HJ, Untch M, Wang HJ, Kuhn W, et al. Her-2/neu gene amplification and response to paclitaxel in patients with metastatic breast cancer. J Natl Cancer Inst. 2004;96:1141–51.

    Article  CAS  PubMed  Google Scholar 

  204. Martin M, Rodriguez-Lescure A, Ruiz A, Alba E, Calvo L, Ruiz-Borrego M, et al. Randomized phase 3 trial of fluorouracil, epirubicin, and cyclophosphamide alone or followed by Paclitaxel for early breast cancer. J Natl Cancer Inst. 2008;100:805–14.

    Article  CAS  PubMed  Google Scholar 

  205. Sparano JA, Wang M, Martino S, Jones V, Perez EA, Saphner T, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med. 2008;358:1663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Learn PA, Yeh IT, McNutt M, Chisholm GB, Pollock BH, Rousseau DL Jr, et al. HER-2/neu expression as a predictor of response to neoadjuvant docetaxel in patients with operable breast carcinoma. Cancer. 2005;103:2252–60.

    Article  CAS  PubMed  Google Scholar 

  207. Gonzalez-Angulo AM, Krishnamurthy S, Yamamura Y, Broglio KR, Pusztai L, Buzdar AU, et al. Lack of association between amplification of her-2 and response to preoperative taxanes in patients with breast carcinoma. Cancer. 2004;101:258–63.

    Article  CAS  PubMed  Google Scholar 

  208. Pu RT, Schott AF, Sturtz DE, Griffith KA, Kleer CG. Pathologic features of breast cancer associated with complete response to neoadjuvant chemotherapy: importance of tumor necrosis. Am J Surg Pathol. 2005;29:354–8.

    Article  PubMed  Google Scholar 

  209. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17:2639–48.

    Article  CAS  PubMed  Google Scholar 

  210. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American society of clinical oncology/college of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.

    Article  CAS  PubMed  Google Scholar 

  211. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update. J Clin Oncol. 2018;36:2105–22.

    Article  CAS  PubMed  Google Scholar 

  212. Perez EA, Cortes J, Gonzalez-Angulo AM, Bartlett JM. HER2 testing: current status and future directions. Cancer Treat Rev. 2014;40:276–84.

    Article  CAS  PubMed  Google Scholar 

  213. Press MF, Slamon DJ, Flom KJ, Park J, Zhou JY, Bernstein L. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol. 2002;20:3095–105.

    Article  CAS  PubMed  Google Scholar 

  214. Penault-Llorca F, Bilous M, Dowsett M, Hanna W, Osamura RY, Rüschoff J, et al. Emerging technologies for assessing HER2 amplification. Am J Clin Pathol. 2009;132:539–48.

    Article  CAS  PubMed  Google Scholar 

  215. Kosa C, Kardos L, Kovacs J, Szollosi Z. Comparison of dual-color dual-hapten brightfield in situ hybridization (DDISH) and fluorescence in situ hybridization in breast cancer HER2 assessment. Pathol Res Pract. 2013;209:147–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suayib Yalcin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cilbir, E., Yalcin, S. (2019). Clinical Aspects of Estrogen and Progesterone Receptors and ERBB2 Testing. In: Aydiner, A., Igci, A., Soran, A. (eds) Breast Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-04606-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04606-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04605-7

  • Online ISBN: 978-3-030-04606-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics