Skip to main content

Absorption Section Design Analysis

  • 1062 Accesses

Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)

Abstract

In this chapter, the design of the absorption section of an industrial CO2 post-combustion capture system using MEA as solvent is analyzed. After the process description, the gas and liquid feed streams are characterized. A two-steps procedure is adopted for the design. Initially, the minimum number of units and the minimum solvent flow rate are determined, then the role of the temperature bulge in the absorber design is discussed. The influence of the molar L/V ratio, which affects the amount of solvent to be used in the process, is studied by means of the analysis of the liquid temperature profiles. Then, the effective solvent flow rate and column dimensions are evaluated. The proposed design procedure for the absorber is proved to avoid the presence of isothermal zones in the column, guarantying the use of the entire packing.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-04579-1_5
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-04579-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2

References

  1. Tobiesen FA, Svendsen HF (2007) Experimental validation of a rigorous absorber model for CO2 postcombustion capture. AIChE J 53(4):846–865

    CrossRef  Google Scholar 

  2. Lawal A, Wang M, Stephenson P et al (2009) Dynamic modelling of CO2 absorption for post-combustion capture in coal-fired power plant. Fuel 88(12):2455–2462

    CrossRef  Google Scholar 

  3. Plaza JM, Wagener DV, Rochelle GT (2009) Modeling CO2 capture with aqueous monoethanolamine. Energy Procedia 1(1):1171–1178

    CrossRef  Google Scholar 

  4. Zhang Y, Chen H, Chen C-C et al (2009) Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Ind Eng Chem Res 48(20):9233–9246

    CrossRef  Google Scholar 

  5. Tobiesen FA, Juliussen O, Svendsen HF (2008) Experimental validation of a rigorous desorber model for CO2 post-combustion capture. Chem Eng Sci 63(10):2641–2656

    CrossRef  Google Scholar 

  6. Tontiwachwuthikul P, Meisen A, Lim CJ (1992) CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. Chem Eng Sci 47(2):381–390

    CrossRef  Google Scholar 

  7. Mac Dowell N, Samsatli NJ, Shah N (2013) Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column. Int J Greenhouse Gas Control 12:247–258

    CrossRef  Google Scholar 

  8. Pintola T, Tontiwachwuthikul P, Meisen A (1993) Simulation of pilot-plant and industrial CO2-MEA absorbers. Gas Sep Purif 7(1):47–52

    CrossRef  Google Scholar 

  9. Singh D, Croiset E, Douglas PL et al (2003) Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs O2/CO2 recycle combustion. Energy Convers Manage 44(19):3073–3091

    CrossRef  Google Scholar 

  10. Alie C, Backham L, Croiset E et al (2005) Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method. Energy Convers Manage 46(3):475–487

    CrossRef  Google Scholar 

  11. Abu-Zahra MRM, Schneiders LHJ, Niederer JPM et al (2007) CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. Int J Greenhouse Gas. Control 1(1):37–46

    Google Scholar 

  12. Cau G, Tola V, Deiana P (2014) Comparative performance assessment of USC and IGCC power plants integrated with CO2 capture systems. Fuel 116:820–833

    CrossRef  Google Scholar 

  13. Lawal A, Wang M, Stephenson P et al (2012) Demonstrating full-scale post-combustions CO2 for coal-fired power plants through dynamic modelling and simulation. Fuel 101:115–128

    CrossRef  Google Scholar 

  14. Nittaya T, Douglas PL, Croiset E et al (2013) Dynamic modeling and evaluation of an industrial-scale CO2 capture plant using monoethanolamine absorption processes. Ind Eng Chem Res 53(28):11411–11426

    CrossRef  Google Scholar 

  15. Madeddu C, Errico M, Baratti R (2018) Process analysis for the carbon dioxide chemical absorption-regeneration system. Appl Energy 215:532–542

    CrossRef  Google Scholar 

  16. Seader JD, Henley EJ, Koper DK (2010) Separation process principles: chemical and biochemical operations. Wiley, New York

    Google Scholar 

  17. Sinnott RK (2005) Coulson & Richardson’s chemical engineering volume 6—chemical engineering design. Elsevier Butterworth-Heinemann

    Google Scholar 

  18. Wang M, Lawal P, Stephenson P et al (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89(9):1609–1624

    CrossRef  Google Scholar 

  19. Tan LS, Shariff M, Lau KK et al (2012) Factors affecting CO2 absorption efficiency in packed column: a review. J Ind Eng Chem 18(6):1874–1883

    CrossRef  Google Scholar 

  20. Bui M, Gunawan I, Verheyen V et al (2014) Dynamic modelling and optimization of flexible operation in post-combustion CO2 capture plants—a review. Comput Chem Eng 61:245–265

    CrossRef  Google Scholar 

  21. de Miguel Mercader F, Magneschi G, Fernander ES et al (2012) Integration between a demo size post-combustion CO2 capture and full size plant. An integral approach on energy penalty for different process options. Int J Greenhouse Gas Control 11S:S102–S113

    Google Scholar 

  22. Lin Y-J, Wong DS-H, Jang S-S (2012) Control strategies for flexible operation of power plant with CO2 capture plant. AIChE J 58(9):2697–2704

    CrossRef  Google Scholar 

  23. Kvamsdal HM, Rochelle GT (2008) Effect of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind Eng Chem Res 47(3):867–875

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Madeddu .

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Madeddu, C., Errico, M., Baratti, R. (2019). Absorption Section Design Analysis. In: CO2 Capture by Reactive Absorption-Stripping. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-04579-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04579-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04578-4

  • Online ISBN: 978-3-030-04579-1

  • eBook Packages: EnergyEnergy (R0)