Skip to main content

Process Modeling in Aspen Plus®

  • Chapter
  • First Online:
CO2 Capture by Reactive Absorption-Stripping

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 2567 Accesses

Abstract

In this chapter, the implementation in Aspen Plus® of the CO2 post-combustion capture by reactive absorption-stripping process model is presented. Components and thermodynamics in the Properties Environment are considered in the first place. Then, in the Simulation environment, the set-up of the RadFrac model—Rate-Based mode, considered mandatory for this kind of process, is extensively described. The attention is especially focused on the appropriate definition of the rate-based model parameters needed for the discretization of the liquid film. A section is dedicated to the examination of the system fluid dynamics by means of the evaluation of the Peclet number and the number of segments analysis. In particular, it is highlighted how this procedure is of fundamental importance to obtain the correct solution of the resulting system of algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cau G, Tola V, Deiana P (2014) Comparative performance assessment of USC and IGCC power plants integrated with CO2 capture systems. Fuel 116:820–833

    Article  Google Scholar 

  2. Plaza JM, Wagener DV, Rochelle GT (2009) Modeling CO2 capture with aqueous monoethanolamine. Energy Procedia 1(1):1171–1178

    Article  Google Scholar 

  3. Wang M, Lawal P, Stephenson P et al (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89(9):1609–1624

    Article  Google Scholar 

  4. Tan LS, Shariff M, Lau KK et al (2012) Factors affecting CO2 absorption efficiency in packed column: a review. J Ind Eng Chem 18(6):1874–1883

    Article  Google Scholar 

  5. Bui M, Gunawan I, Verheyen V et al (2014) Dynamic modelling and optimisation of flexible operation in post-combustion CO2 capture plants-A review. Comput Chem Eng 61:245–265

    Article  Google Scholar 

  6. Austgen DM, Rochelle GT, Peng X et al (1989) Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte-NRTL Equation. Ind Eng Chem Res 28(7):1060–1073

    Article  Google Scholar 

  7. Weiland RH, Chakravarty T, Mather AE (1993) Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines. Ind Eng Chem Res 32(7):1419–1430

    Article  Google Scholar 

  8. Lawal A, Wang M, Stephenson P et al (2009) Dynamic modelling of CO2 absorption for post-combustion capture in coal-fired power plant. Fuel 88(12):2455–2462

    Article  Google Scholar 

  9. Lin Y, Pan T-H, Shan-Hill Wong D et al (2011) Plantwide control of CO2 capture by absorption and stripping using monoethanolamine solution. Ind Eng Chem Res 50(3):1338–1345

    Article  Google Scholar 

  10. Biliyok C, Lawal A, Wang M et al (2012) Dynamic modelling, validation and analysis of post-combustion chemical absorption CO2 capture plant. Int J Greenhouse Gas Control 9:428–445

    Article  Google Scholar 

  11. Liu Y, Zhang L, Watanasiri S (1999) Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model. Ind Eng Chem Res 38(5):2080

    Article  Google Scholar 

  12. Hilliard MD (2008) A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas. Dissertation, The University of Texas at Austin

    Google Scholar 

  13. Kvamsdal HM, Rochelle GT (2008) Effect of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind Eng Chem Res 47(3):867–875

    Article  Google Scholar 

  14. Zhang Y, Chen H, Chen C-C et al (2009) Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Ind Eng Chem Res 48(20):9233–9246

    Article  Google Scholar 

  15. Moioli S, Pellegrini LA, Gamba S (2012) Simulation of CO2 capture by MEA scrubbing with a rate-based model. Procedia Eng 42:1651–1661

    Article  Google Scholar 

  16. Razi N, Svendsen HF, Bolland O (2013) Validation of mass transfer correlations for CO2 absorption with MEA using pilot data. Int J Greenhouse Gas Control 19:478–491

    Article  Google Scholar 

  17. Posch S, Haider M (2013) Dynamic modeling of CO2 absorption from coal-fired power plant into an aqueous monoethanolamine solution. Chem Eng Res Des 91(6):977–987

    Article  Google Scholar 

  18. Errico M, Madeddu C, Pinna D et al (2016) Model calibration for the carbon dioxide-amine absorption system. Appl Energy 183:958–968

    Article  Google Scholar 

  19. Madeddu C, Errico M, Baratti R (2017) Rigorous modeling of a CO2-MEA stripping system. Chem Eng Trans 57:451–456

    Google Scholar 

  20. Luo X, Wang M (2017) Improving prediction accuracy of a rate-based model of an MEA-based carbon capture process for large-scale commercial deployment. Engineering 3:232–243

    Article  Google Scholar 

  21. Lawal A, Wang M, Stephenson P et al (2010) Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants. Fuel 89(10):2791–2801

    Article  Google Scholar 

  22. Freguia S (2002) Modeling of CO2 Removal from Flue Gases with Monoethanolamine. Dissertation, The University of Texas at Austin

    Google Scholar 

  23. Nasrifar K, Tafazzol AH (2010) Vapor-liquid equilibria of acid gas-aqueous ethanolamine solutions using the PC-SAFT equation of state. Ind Eng Chem Res 49(16):7620–7630

    Article  Google Scholar 

  24. Aboudheir A, Tontiwachwuthikul P, Chakma A et al (2003) Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chem Eng Sci 58(23–24):5195–5210

    Article  Google Scholar 

  25. Tobiesen FA, Svendsen HF (2007) Experimental validation of a rigorous absorber model for CO2 postcombustion capture. AIChE J 53(4):846–865

    Article  Google Scholar 

  26. Faramarzi L, Kontogeorgis GM, Michelsen ML et al (2010) Absorber model for CO2 capture by monoethanolamine. Ind Eng Chem Res 49(8):3751–3759

    Article  Google Scholar 

  27. Meldon JH, Morales-Cabrera JA (2011) Analysis of carbon dioxide absorption in and stripping from aqueous monoethanolamine. Chem Eng Journ 171(3):753–759

    Article  Google Scholar 

  28. Mores P, Scenna N, Mussati S (2012) A rate based model of a packed column for CO2 absorption using aqueous monoethanolamine solution. Int J Greenhouse Gas Control 6:21–36

    Article  Google Scholar 

  29. Mores P, Scenna N, Mussati S (2012) CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process. Energy 45(1):1042–1058

    Article  Google Scholar 

  30. Neveux T, Moullec YL, Corriou J-P et al (2013) Modeling CO2 capture in amine solvents: prediction of performance and insights on limiting phenomena. Ind Eng Chem Res 52(11):4266–4279

    Article  Google Scholar 

  31. Aspen Technology, Inc. (2008) Aspen plus: rate based model of the CO2 capture process by MEA using aspen plus. Aspen Technology Inc., Burlington, MA

    Google Scholar 

  32. Pinsent BRW, Pearson L, Roughton FJW (1956) The kinetics of combination of carbon dioxide with hydroxide ions. Trans Faraday Soc 52:1512–1520

    Article  Google Scholar 

  33. Murphree EV (1925) Rectifying column calculations with particular reference to N component mixtures. Ind Eng Chem 17(7):747–750

    Article  Google Scholar 

  34. Øi LE (2007) Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant. Paper presented at the SIMS2007 Conference, Gøteborg, 30–31 October 2007

    Google Scholar 

  35. Mores P, Scenna N, Mussati S (2011) Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution. Chem Eng Res Des 89(9):1587–1599

    Article  Google Scholar 

  36. Øi LE (2012) Comparison of Aspen HYSYS and Aspen Plus simulation of CO2 absorption into MEA from atmospheric gas. Energy Procedia 23:360–369

    Article  Google Scholar 

  37. Walter JF, Sherwood TK (1941) Gas absorption in bubble-cap columns. Ind Eng Chem 33(4):493–501

    Article  Google Scholar 

  38. Afkhamipour M, Mofarahi M (2013) Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution. Int J Greenhouse Gas Control 15:186–199

    Article  Google Scholar 

  39. Kucka L, Müller I, Kenig EY, Górak A (2003) On the modelling and simulation of sour gas absorption by aqueous amine solutions. Chem Eng Sci 58(16):3571–3578

    Article  Google Scholar 

  40. Kvamsdal HM, Jakobsen JP, Hoff KA (2009) Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chem Eng Process Intensif 49(1):135–144

    Article  Google Scholar 

  41. Gáspár J, Cormoş A-M (2011) Dynamic modeling and validation of absorber and desorber column for post-combustion CO2 capture. Comput Chem Eng 35(10):2044–2052

    Article  Google Scholar 

  42. Khan FM, Krishnamoorti V, Mahmud T (2011) Modelling reactive absorption of CO2 in packed column for post-combustion carbon capture applications. Chem Eng Res Des 89(9):1600–1608

    Article  Google Scholar 

  43. Gaspar J, Cormos A-M (2012) Dynamic modeling and absorption capacity assessment of CO2 capture process. Int J Greenhouse Gas Control 8:45–55

    Article  Google Scholar 

  44. Kvamsdal HM, Hillestad M (2012) Selection of model parameter correlations in a rate-based CO2 absorber model aimed for process simulation. Int J Greenhouse Gas Control 11:11–20

    Article  Google Scholar 

  45. Mac Dowell N, Samsatli NJ, Shah N (2013) Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column. Int J Greenhouse Gas Control 12:247–258

    Article  Google Scholar 

  46. Lewis WK, Whitman WG (1924) Principles of gas absorption. Ind Eng Chem 16(12):1215–1220

    Article  Google Scholar 

  47. Scott-Fogler H (2006) Elements of chemical reaction engineering, Prentice Hall

    Google Scholar 

  48. Taylor R, Krishna R (1993) Multicomponent Mass Transfer. Wiley, New York

    Google Scholar 

  49. Levenspiel O (1999) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  50. Zhang Y, Chen C-C (2013) Modeling CO2 absorption and desorption by aqueous monoethanolamine solution with Aspen rate-based model. Energy Procedia 37:1584–1596

    Article  Google Scholar 

  51. Pacheco MA, Rochelle GT (1998) Rate-based modeling of reactive absorption of CO2 and H2S into aqueous methyldiethanolamine. Ind Eng Chem Res 37(10):4107–4117

    Article  Google Scholar 

  52. Davis ME (1984) Numerical methods and modelling for chemical engineers. Wiley, New York

    Google Scholar 

  53. Kenig EY, Schneider R, Górak A (1999) Rigorous dynamic modelling of complex reactive absorption processes. Chem Eng Sci 54(21):5195–5203

    Article  Google Scholar 

  54. Schneider R, Kenig EY, Górak A (2001) Complex reactive absorption processes: model optimization and dynamic column simulation. Comput Aided Chem Eng 9:285–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Madeddu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madeddu, C., Errico, M., Baratti, R. (2019). Process Modeling in Aspen Plus®. In: CO2 Capture by Reactive Absorption-Stripping. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-04579-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04579-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04578-4

  • Online ISBN: 978-3-030-04579-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics