Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)


This introductory chapter includes a discussion on the concept of pollution and a description of the relationship between the increase of the carbon dioxide emissions and the pollution of the four spheres of the Earth system, i.e., atmosphere, hydrosphere, geosphere and biosphere. A brief history of climate change is presented from a scientific and a political point of view. The carbon capture and storage technologies, considered as the most effective solutions for the immediate mitigation of the anthropological CO2 emissions, are introduced and described. In the end, the motivations and the objectives of the book are reported, together with a short summary of the different chapters.


  1. 1.
    Russel V (1974) Pollution: concept and definition. Biol Cons 6(3):157–161CrossRefGoogle Scholar
  2. 2.
    Springer AL (1977) Towards a meaningful concept of pollution in international law. ICLQ 26(3):531–557CrossRefGoogle Scholar
  3. 3.
    Birnie PW, Boyle AE, Redgwell C (2009) International law and environment. Oxford University PressGoogle Scholar
  4. 4.
    Shi Y (2016) Are greenhouse gas emissions from international shipping a type of marine pollution? Mar Pollut Bull 113(1–2):187–192CrossRefGoogle Scholar
  5. 5.
    van Heijnsbergen P (1979) The “Pollution” concept in international law. Envtl Pol’y and L 5:11–13CrossRefGoogle Scholar
  6. 6.
    A/CONF.48/14/Rev.1 (1972) Report of the United Nations conference on the human environment. United NationsGoogle Scholar
  7. 7.
    Recommendation of the council on principles concerning transfrontier pollution. OECD (1974)Google Scholar
  8. 8.
    Victor DG, Zhou D, Ahmed EHM et al (2014) Chapter 1—introductory chapter. In: Climate change 2014: mitigation of climate change. Technical report IPCC working group III contribution to AR5, Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Rehan Dastagir M (2015) Modeling recent climate change induced extreme events in Bangladesh: a review. Weather Clim Extremes 7:49–60CrossRefGoogle Scholar
  10. 10.
    Shaltout M, Tonbol K, Omstedt A (2015) Sea-level change and projected future flooding along the Egyptian Mediterranean coast. Oceanologia 57(4):293–307CrossRefGoogle Scholar
  11. 11.
    Apergis N, Gupta R, Lau CKM et al (2018) U.S. state-level carbon dioxide emissions: does it affect health care expenditure? Renew Sust Energ Lev 91:521–530CrossRefGoogle Scholar
  12. 12.
    Fourier J-BJ (1827) Mémoire Sur Les Températures Du Globe Terrestre Et Des Espaces Planétaires. Mem Acad Sci Inst France 7:569–604Google Scholar
  13. 13.
    Tyndall J (1863) On Radiation through the Earth’s Atmosphere. Lond Edinb Dubl Phil Mag 25(167):200–206CrossRefGoogle Scholar
  14. 14.
    Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Lond Edinb Dubl Phil Mag 41(251):237–276CrossRefGoogle Scholar
  15. 15.
    Callendar GS (1938) The artificial production of carbon dioxide and its influence on temperature. Q J Roy Meteor Soc 64(275):223–240CrossRefGoogle Scholar
  16. 16.
    Plass GN (1956) The carbon dioxide theory of climatic change. Tellus 8(2):140–154CrossRefGoogle Scholar
  17. 17.
    Keeling CD (1960) The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12(2):200–203CrossRefGoogle Scholar
  18. 18.
    Wigley TML, Jones PD (1981) Detecting CO2-induced climatic change. Nature 292:205–208CrossRefGoogle Scholar
  19. 19.
    Agrawala S (1998) Context and early origins of the intergovernmental panel on climate change. Clim Change 39(4):605–620CrossRefGoogle Scholar
  20. 20.
    Zillman JW (2009) A history of climate activites. WMO Bulletin 58(3):141–150Google Scholar
  21. 21.
    Bodansky D (2001) The history of the global climate change regime. In: International relations and global climate change, The MIT Press, Massachussets Institute of Technology, CambridgeGoogle Scholar
  22. 22.
    Usher P (1989) World conference on the changing atmosphere: implications for global security. Environment 31(1):25–27MathSciNetGoogle Scholar
  23. 23.
    Agrawala S (1998) Structural and process history of the intergovernmental panel on climate change. Clim Change 39(4):621–642CrossRefGoogle Scholar
  24. 24.
    IPCC (1992) Climate change: the IPCC 1990 and 1992 assessments. IPCC first assessment report overview and policymaker summaries and 1992 IPCC supplement. WMOGoogle Scholar
  25. 25.
    UNFCCC (1998) Kyoto protocol to the United Nations framework convention on climate change. United NationsGoogle Scholar
  26. 26.
    UNFCCC (2015) Paris agreement. United NationsGoogle Scholar
  27. 27.
    Zhang H-B, Dai H-C, Lai H-X et al (2017) U.S. withdrawal from the paris agreement: reasons, impacts, and China’s response. Adv Clim Change Res 8(4):220–225CrossRefGoogle Scholar
  28. 28.
    Lorenzoni I, Pidgeon NF (2006) Public views on climate change: European and USA perspectives. Clim Change 77(1–2):73–95CrossRefGoogle Scholar
  29. 29.
    Hamilton LC (2011) Education, politics and opinions about climate change evidence for interaction effects. Clim Change 104(2):231–242CrossRefGoogle Scholar
  30. 30.
    Porter E (2018) Fighting climate change?. We’re Not Even Landing a Punch, The New York TimesGoogle Scholar
  31. 31.
    Friedman L, Popovich N, Fountain H (2018) Who’s most responsible for global warming? The New York TimesGoogle Scholar
  32. 32.
    Plumer B (2018) Greenhouse gas emissions rose last year. Here are the top 5 reasons. The New York TimesGoogle Scholar
  33. 33.
    Nuccitelli D (2018) California, battered by global warming’s weather whiplash, is fighting to stop it. The GuardianGoogle Scholar
  34. 34.
    Albanese S, Steinberg M (1980) Environmental control technology for atmospheric carbon dioxide. Energy 5(7):641–664CrossRefGoogle Scholar
  35. 35.
    Riemer P (1996) Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the IEA Greenhouse Gas R&D programme. Energy Convers Manag 37(6–8):665–670CrossRefGoogle Scholar
  36. 36.
    Audus H (1997) Greenhouse gas mitigation technology: an overview of the CO2 capture and sequestration and further activities of the IEA Greenhouse Gas R&D programme. Energy 22(2–3):217–221CrossRefGoogle Scholar
  37. 37.
    Gunter WD, Wong S, Cheel DB et al (1998) Large CO2 sinks: their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective. Appl Energy 61(4):209–227CrossRefGoogle Scholar
  38. 38.
    IPCC (2005) Intergovernmental panel on climate change, special report on carbon dioxide capture and storage. Technical report Cambridge University Press, Cambridge, United KingdomGoogle Scholar
  39. 39.
    Global CCS Institute (2017) The Global Status of CCS: 2017. AustraliaGoogle Scholar
  40. 40.
    Wang M, Lawal A, Stephenson P et al (2011) Post-combustion CO2 capture with chemical absorption: a state-of- the-art-review. Chem Eng Res Des 89(9):1609–1624CrossRefGoogle Scholar
  41. 41.
    Krishna Priya GS, Bandyopadhyay S, Tan RR (2014) Power system planning with emission constraints: effects of CCS retrofitting. Process Saf Environ Prot 92(5):447–455CrossRefGoogle Scholar
  42. 42.
    Tontiwachwuthikul P, Meisen A, Jim Lim C (1992) CO2 absorption by NaOH, monoethanolamine and 2-Amino-2-Methyl-1-Propanol solutions in a packed column. Chem Eng Sci 47(2):381–390CrossRefGoogle Scholar
  43. 43.
    Tobiesen FA, Svendsen HF (2007) Experimental validation of a rigorous absorber model for CO2 postcombustion capture. AIChE J 53(4):846–865CrossRefGoogle Scholar
  44. 44.
    Tobiesen FA, Juliussen O, Svendsen HF (2008) Experimental validation of a rigorous desorber model for CO2 post-combustion capture. Chem Eng Sci 63(10):2641–2656CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Chen H, Chen C-C et al (2009) Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Ind Eng Chem Res 48(20):9233–9246CrossRefGoogle Scholar
  46. 46.
    Lawal A, Wang M, Stephenson P et al (2009) Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants. Fuel 88(12):2455–2462CrossRefGoogle Scholar
  47. 47.
    Plaza JM, Van Wagener D, Rochelle GT (2009) Modeling CO2 capture with aqueous monoethanolamine. Energy Procedia 1(1):1171–1178CrossRefGoogle Scholar
  48. 48.
    Mac Dowell N, Samsatli NJ, Shah N (2013) Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column. Int J Greenhouse Gas Control 12:247–258CrossRefGoogle Scholar
  49. 49.
    Errico M, Madeddu C, Pinna D et al (2016) Model calibration for the carbon dioxide-amine absorption system. Appl Energy 183:958–968CrossRefGoogle Scholar
  50. 50.
    Madeddu C, Errico M, Baratti R (2017) Rigorous modeling of a CO2-MEA stripping system. Chem Eng Trans 57:451–456Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università di CagliariCagliariItaly
  2. 2.Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern DenmarkOdense MDenmark
  3. 3.Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità di CagliariCagliariItaly

Personalised recommendations