Skip to main content

Effects on EEG of Drugs and Toxic Substances

  • Chapter
Clinical Electroencephalography

Abstract

The use of different drugs in clinical practice has enhanced the importance of pharmaco-EEG (P-EEG) studies in recent years.

The first part of this chapter will discuss the general and methodological aspects of P-EEG.

In the second part, EEG characteristics of individual drugs (antiepileptic and non-antiepileptic drugs) will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jobert M, Wilson FJ. Advanced analysis of Pharmaco-EEG data in humans. Neuropsychobiology. 2015;72:165–77.

    Article  CAS  PubMed  Google Scholar 

  2. Babiloni C, Vecchio F, Lizio R, et al. Resting state cortical rhythms in mild cognitive impairment and Alzheimer’s disease: electroencephalographic evidence. J Alzheimers Dis. 2011;26(Suppl 3):201–14.

    Article  PubMed  Google Scholar 

  3. Jobert M, Wilson FJ, Ruigt GSF, et al. Guidelines for the recording and evaluation of Pharmaco-EEG data in man: the international Pharmaco-EEG society (IPEG). Neuropsychobiology. 2012;66:201–20.

    Article  PubMed  Google Scholar 

  4. Jobert M, Schulz H, Jahnig P. On the choice of recording duration in pharmaco-EEG studies. Neuropsychobiology. 1995;32:106–14.

    Article  CAS  PubMed  Google Scholar 

  5. Olbrich S, Mulert C, Karch S, et al. EEG vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage. 2009;45:319–32.

    Article  PubMed  Google Scholar 

  6. Salinsky MC, Oken BS, Morehead L. Intraindividual analysis of antiepileptic drug effects on EEG background rhythms. Electroencephalogr Clin Neurophysiol. 1994;90:186–93.

    Article  CAS  PubMed  Google Scholar 

  7. Salinsky MC, Oken BS, Storzbach D, Dodrill CB. Assessment of CNS effects of antiepileptic drugs by using quantitative EEG measures. Epilepsia. 2003;44:1042–50.

    Article  CAS  PubMed  Google Scholar 

  8. Marciani MG, Gigli GL, Stefanini F, et al. Effect of carbamazepine on EEG background activity and on interictal epileptiform abnormalities in focal epilepsy. Int J Neurosci. 1993;70:107–16.

    Article  CAS  PubMed  Google Scholar 

  9. Wu X, Xiao CH. Quantitative pharmaco-EEG of carbamazepine in volunteers and epileptics. Clin Electroencephalogr. 1996;27:40–5.

    Article  CAS  PubMed  Google Scholar 

  10. Cherian KA, Legatt AD. Burst suppression pattern on electroencephalogram secondary to Valproic acid-induced Hyperammonemic encephalopathy. Pediatr Neurol. 2017;73:88–91.

    Article  PubMed  Google Scholar 

  11. Arzy S, Allali G, Brunet D. Antiepileptic drugs modify power of high EEG frequencies and their neural generators. Eur J Neurol. 2010;17:1308–12.

    Article  CAS  PubMed  Google Scholar 

  12. Mecarelli O, Vicenzini E, Pulitano P, et al. Clinical, cognitive, and neurophysiologic correlates of short-term treatment with carbamazepine, oxcarbazepine, and levetiracetam in healthy volunteers. Ann Pharmacother. 2004;38:1816–22.

    Article  CAS  PubMed  Google Scholar 

  13. Nicholson A, Appleton RE, Chadwick DW, Smith DF. The relationship between treatment with valproate, lamotrigine, and topiramate and the prognosis of then idiopathic generalized epilepsies. J Neurol Neurosurg Psychiatry. 2004;75:75–9.

    Google Scholar 

  14. Clemens B, Ménes A, Piros P, et al. Quantitative EEG effects of carbamazepine, oxcarbazepine, valproate, lamotrigine, and possible clinical relevance of the findings. Epilepsy Res. 2006;70:190–9.

    Article  CAS  PubMed  Google Scholar 

  15. Clemens B, Piros P, Bessenyei M, Hollody K. Lamotrigine decreases EEG synchronization in a use-dependent manner in patients with idiopathic generalized epilepsy. Clin Neurophysiol. 2007;118:910–7.

    Article  CAS  PubMed  Google Scholar 

  16. Lyseng-Williamson KA. Levetiracetam: a review of its use in epilepsy. Drugs. 2011;71:489–514.

    Article  CAS  PubMed  Google Scholar 

  17. Bouchier B, Demarquay G, Guérin C, André-Obadia N, Gobert F. Marked EEG worsening following Levetiracetam overdose: how a pharmacological issue can confound coma prognosis. Clin Neurol Neurosurg. 2017;152:1–4.

    Article  PubMed  Google Scholar 

  18. Schomer DL. In: Lopes da Silva FH, editor. Niedermeyer’s electroencephalography: basic principles, clinical applications and related fields. New York: Oxford University Press; 2018.

    Google Scholar 

  19. Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalized and unclassifiable epilepsy: an unblinded randomized controlled trial. Lancet. 2007;369:1016–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Specchio N, Boero G, Michelucci R, et al. Effects of levetiracetam on EEG abnormalities in juvenile myoclonic epilepsy. Epilepsia. 2008;49:663–9.

    Article  PubMed  Google Scholar 

  21. Pro S, Vicenzini E, Pulitano P, et al. Effects of levetiracetam on generalized discharges monitored with ambulatory EEG in epileptic patients. Seizure. 2009;18:133–8.

    Article  PubMed  Google Scholar 

  22. Biraben A, Allain H, Scarabin J, Schück S, Edan G. Exacerbation of juvenile myoclonic epilepsy with lamotrigine. Neurology. 2000;55:1758.

    Article  CAS  PubMed  Google Scholar 

  23. Morris G, Hammer A, Kustra R, Messenheimer J. Lamotrigine for patients with juvenile myoclonic epilepsy following prior treatment with valproate: results of an open-label study. Epilepsy Behav. 2004;5:509–21.

    Article  PubMed  Google Scholar 

  24. Machado RA, García VF, Astencio AG, Cuartas VB. Efficacy and tolerability of lamotrigine in juvenile myoclonic epilepsy in adults: a prospective, unblinded randomized controlled trial. Seizure. 2013;22:846–55.

    Article  PubMed  Google Scholar 

  25. Liu J, Wang LN, Wang YP. Topiramate monotherapy for juvenile myoclonic epilepsy. Cochrane Database Syst Rev. 2017;4:CD010008.

    PubMed  Google Scholar 

  26. Mecarelli O, Piacenti A, Pulitano P, et al. Clinical and electroencephalographic effects of topiramate in patients with epilepsy and healthy volunteers. Clin Neuropharmacol. 2001;24:284–9.

    Article  CAS  PubMed  Google Scholar 

  27. Misra UK, Dubey D, Kalita J. Comparison of lacosamide versus sodium valproate in status epilepticus: a pilot study. Epilepsy Behav. 2017;76:110–3.

    Article  PubMed  Google Scholar 

  28. Zhu LN, Chen D, Xu D, Tan G, Wang HJ, Liu L. Newer antiepileptic drugs compared to levetiracetam as adjunctive treatments for uncontrolled focal epilepsy: an indirect comparison. Seizure. 2017;51:121–32.

    Article  PubMed  Google Scholar 

  29. d’Orsi G, Pascarella MG, Martino T, et al. Intravenous lacosamide in seizure emergencies: observations from a hospitalized in-patient adult population. Seizure. 2016;42:20–8.

    Article  PubMed  Google Scholar 

  30. Behr C, Lévesque M, Ragsdale D, Avoli M. Lacosamide modulates interictal spiking and high-frequency oscillations in a model of mesial temporal lobe epilepsy. Epilepsy Res. 2015;115:8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manconi M, Ferri R, Miano S, et al. Sleep architecture in insomniacs with severe benzodiazepine abuse. Clin Neurophysiol. 2017;128:875–81.

    Article  PubMed  Google Scholar 

  32. Jernajczyk W, Gosek P, Latka M, Kozlowska K, Święcicki Ł, West BJ. Alpha wavelet power as a biomarker of antidepressant treatment response in bipolar depression. Adv Exp Med Biol. 2017;968:79–94.

    Article  PubMed  Google Scholar 

  33. Bruder GE, Sedoruk JP, Stewart JW, McGrath PJ, Quitkin FM, Tenke CE. Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: pre-and post-treatment findings. Biol Psychiatry. 2008;63:1171–7.

    Article  CAS  PubMed  Google Scholar 

  34. Arns M, Bruder G, Hegerl U, et al. EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT-D study. Clin Neurophysiol. 2016;127:509–19.

    Article  PubMed  Google Scholar 

  35. Baskaran A, Milev R, McIntyre RS. The neurobiology of the EEG biomarker as a predictor of treatment response in depression. Neuropharmacology. 2012;63:507–13.

    Article  CAS  PubMed  Google Scholar 

  36. Macaluso M, Zackula R, D’Empaire I, Baker B, Liow K, Preskorn SH. Twenty percent of a representative sample of patients taking bupropion have abnormal, asymptomatic electroencephalographic findings. J Clin Psychopharmacol. 2010;30:312–7.

    Article  PubMed  Google Scholar 

  37. Ott GE, Rao U, Lin KM, Gertsik L, Poland RE. Effect of treatment with bupropion on EEG sleep: relationship to antidepressant response. Int J Neuropsychopharmacol. 2004;7:275–81.

    Article  CAS  PubMed  Google Scholar 

  38. Leiser SC, Pehrson AL, Robichaud PJ, Sanchez C. Multimodal antidepressant vortioxetine increases frontal cortical oscillations unlike escitalopram and duloxetine–a quantitative EEG study in rats. Br J Pharmacol. 2014;171:4255–72.

    Google Scholar 

  39. Pehrson AL, Leiser SC, Gulinello M. Treatment of cognitive dysfunction in major depressive disorder—a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. Eur J Pharmacol. 2015;753:19–31.

    Article  CAS  PubMed  Google Scholar 

  40. Dale E, Zhang H, Leiser SC, et al. Vortioxetine (Lu AA21004) disinhibits pyramidal cell output and enhances theta rhythms and long-term plasticity in the hippocampus. Eur Neuropsychopharmacol. 2013;23:S394.

    Article  Google Scholar 

  41. Riga MS, Celada P, Sanchez C, Artigas F. Role of 5-HT3 receptors in the mechanism of action of the investigational antidepressant vortioxetine. Eur Neuropsychopharmacol. 2013;23:S393–4.

    Article  Google Scholar 

  42. Hunter AM, Leuchter AF, Cook IA, et al. Brain functional changes and duloxetine treatment response in fibromyalgia: a pilot study. Pain Med. 2009;10:730–8.

    Article  PubMed  Google Scholar 

  43. Bruder GE, Sedoruk JP, Steward JW. EEG alpha measures predict therapeutic response to an SSRI antidepressant: pre and post treatment findings. Biol Psychiatry. 2008;63:1171–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bloechliger M, Ceschi A, Rüegg S, et al. Risk of seizures associated with antidepressant use in patients with depressive disorder: follow-up study with a nested case–control analysis using the clinical practice research datalink. Drug Saf. 2016;39:307.

    Article  CAS  PubMed  Google Scholar 

  45. Wu C, Liu HY, Tsai HJ, Liu SK. Seizure risk associated with antidepressant treatment among patients with depressive disorders: a population-based case-crossover study. J Clin Psychiatry. 2017;78:e1226–32.

    Article  PubMed  Google Scholar 

  46. Liem-Moolenaar M, Gray FA, de Visser SJ, et al. Psychomotor and cognitive effects of a single oral dose of talnetant (SB223412) in healthy volunteers compared with placebo or haloperidol. J Psychopharmacol. 2010;24:73–82.

    Article  CAS  PubMed  Google Scholar 

  47. Yoshimura M, Koenig T, Irisawa S, et al. A pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology (Berl). 2007;191:995–1004.

    Article  CAS  Google Scholar 

  48. Knott V, Labelle A, Jones B, Mahoney C. Quantitative EEG in schizophrenia and in response to acute and chronic clozapine treatment. Schizophr Res. 2001;50:41–53.

    Article  CAS  PubMed  Google Scholar 

  49. Centorrino F, Price BH, Tuttle M, et al. EEG abnormalities during treatment with typical and atypical antipsychotics. Am J Psychiatry. 2002;159:109–15.

    Article  PubMed  Google Scholar 

  50. Henninger GR. Lithium carbonate and brain function. Cerebral-evoked potentials, EEG and symptom changes during lithium carbonate treatment. Arch Gen Psychiatry. 1978;35:228–33.

    Article  Google Scholar 

  51. Thau K, Rappelsberger P, Lovrek A, Petsche H, Simhandl C, Topitz A. Effect of lithium on the EEG of healthy males and females. A probability mapping study. Neuropsychobiology. 1989;20:158–63.

    Article  CAS  PubMed  Google Scholar 

  52. Aiyer R, Novakovic V, Barkin RL. A systematic review on the impact of psychotropic drugs on electroencephalogram waveforms in psychiatry. Postgrad Med. 2016;128:656–64.

    Article  PubMed  Google Scholar 

  53. Avidan MS, Zhang L, Burnside BA, et al. Anesthesia awareness and the bispectral index. N Engl J Med. 2008;358:1097–108.

    Article  CAS  PubMed  Google Scholar 

  54. Kelley SD. Monitoring consciousness: using the bispectral index. 2nd ed. Boulder: Covidien; 2010. p. 6.

    Google Scholar 

  55. Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists part I: background and basic signatures. Anesthesiology. 2015;123:937–60.

    Article  CAS  PubMed  Google Scholar 

  56. Besch G, Liu N, Samain E, et al. Occurrence of and risk factors for electroencephalogram burst suppression during propofol-remifentanil anaesthesia. Br J Anaesth. 2011;107:749–56.

    Article  CAS  PubMed  Google Scholar 

  57. Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013;110:E1142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Akeju O, Kim SE, Vazquez R, et al. Spatiotemporal dynamics of dexmedetomidine-induced electroencephalogram oscillations. PLoS One. 2016;11:e0163431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Akeju O, Pavone KJ, Westover MB, et al. A comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology. 2014;121:978–89.

    Article  CAS  PubMed  Google Scholar 

  60. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34:605–13.

    CAS  PubMed  Google Scholar 

  61. Pertwee RG, Howlett AC, Abood ME, et al. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB and CB. Pharmacol Rev. 2010;62:588–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77:299–318.

    Article  CAS  PubMed  Google Scholar 

  63. Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev. 2003;83:1017–66.

    Article  CAS  PubMed  Google Scholar 

  64. Eggan SM, Melchitzky DS, Sesack SR, Fish KN, Lewis DA. Relationship of cannabinoid CB1 receptor and cholecystokinin immunoreactivity in monkey dorsolateral prefrontal cortex. Neuroscience. 2010;169:1651–61.

    Article  CAS  PubMed  Google Scholar 

  65. Farkas I, Kallo I, Deli L, et al. Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons. Endocrinology. 2010;151:5818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Katona I, Sperlagh B, Magloczky Z, et al. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience. 2000;100:797–804.

    Article  CAS  PubMed  Google Scholar 

  67. Ceballos NA, Bauer LO, Houston RJ. Recent EEG and ERP findings in substance abusers. Clin EEG Neurosci. 2009;40:122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sutter R, Ruegg S, Sutter ST. Seizures as adverse events of antibiotic drugs: a systematic review. Neurology. 2015;85:1332–41.

    Article  CAS  PubMed  Google Scholar 

  69. Boston Collaborative Drug Surveillance Program. Drug induced convulsions: report from the Boston Collaborative Drug Surveillance Program. Lancet. 1972;2:677–9.

    Google Scholar 

  70. Van Duijn H, Schwartzkroin PA, Prince DA. Action of penicillin on inhibitory processes in the cat’s cortex. Brain Res. 1973;53:470–6.

    Article  PubMed  Google Scholar 

  71. Wong RK, Prince DA. Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science. 1979;204:1228–31.

    Article  CAS  PubMed  Google Scholar 

  72. Raposo J, Teotónio R, Bento C, Sales F. Amoxicillin, a potential epileptogenic drug. Epileptic Disord. 2016;18:454–7.

    Article  PubMed  Google Scholar 

  73. Fernández-Torre JL, Santos-Sánchez C, Pelayo AL. De novo generalised non-convulsive status epilepticus triggered by piperacillin/tazobactam. Seizure. 2010;19:529–30.

    Article  PubMed  Google Scholar 

  74. Pro S, Randi F, Pulitano P, Vicenzini E, Mecarelli O. Reversible encephalopathy induced by cefoperazone: a case report monitored with EEG. Neurol Sci. 2011;32:465–7.

    Article  PubMed  Google Scholar 

  75. De Silva DA, Pan AB, Lim SH. Cefepime-induced encephalopathy with triphasic waves in three Asian patients. Ann Acad Med Singapore. 2007;36:450–1.

    PubMed  Google Scholar 

  76. Martínez-Rodríguez JE, Barriga FJ, Santamaria J, et al. Nonconvulsive status epilepticus associated with cephalosporins in patients with renal failure. Am J Med. 2001;111:115–9.

    Article  PubMed  Google Scholar 

  77. Sugimoto M, Uchida I, Mashimo T, et al. Evidence for the involvement of GABA(A) receptor blockade in convulsions induced by cephalosporins. Neuropharmacology. 2003;45:304–14.

    Article  CAS  PubMed  Google Scholar 

  78. Miller AD, Ball AM, Bookstaver PB, Dornblaser EK, Bennett CL. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31:408–23.

    Article  CAS  PubMed  Google Scholar 

  79. Fernández-Torre JL, Velasco M, Gutiérrez R, Fernández-Sampedro M. Encephalopathy secondary to imipenem therapy. Clin EEG Neurosci. 2004;35:100–3.

    Article  PubMed  Google Scholar 

  80. Green MA, Halliwell RF. Selective antagonism of the GABA(A) receptor by ciprofloxacin and biphenylacetic acid. Br J Pharmacol. 1997;122:584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mazzei D, Accardo J, Ferrari A, Primavera A. Levofloxacin neurotoxicity and non-convulsive status epilepticus (NCSE): a case report. Clin Neurol Neurosurg. 2012;114:1371–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriano Mecarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Brienza, M., Pulitano, P., Mecarelli, O. (2019). Effects on EEG of Drugs and Toxic Substances. In: Mecarelli, O. (eds) Clinical Electroencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-04573-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04573-9_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04572-2

  • Online ISBN: 978-3-030-04573-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics