Skip to main content

Neurophysiological Basis of EEG

  • Chapter
Clinical Electroencephalography

Abstract

The Electro Encephalo Gram (EEG) records the bioelectric currents within the brain from the scalp. Pyramidal neurons dendrites organization in the cortex, running parallel with each other and perpendicular to the cortical surface, generate large extracellular currents recordable from the scalp as EEG.

However, considering EEG just a tool to measure the result of cerebral cortical electrical activity is highly reductive. Although subcortical structures produce potentials that are not directly detectable on the scalp - since the electric field decreases in strength as the square of the distance from its source - these can be indirectly recorded by the EEG: EEG rhythms depend indeed on the synchronization of the waves deriving from the summation of synaptic potentials generated by the activity of the thalamocortical neurons.

In the first part of this chapter, anatomo-physiological features of the cerebral cortex will be described with particular reference to the genesis of the electrical potentials. The second part will be more speficially dedicated to the genesis of the EEG potential and, finally, to a special focus on the specific EEG rhythms origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Standring S. Gray’s anatomy: The anatomical basis of clinical practice. 40th ed. London: Churchill-Livingstone/Elsevier; 2008.

    Google Scholar 

  2. London M, Hausser M. Dendritic computation. Annu Rev Neurosci. 2005;28:503–32.

    Article  CAS  Google Scholar 

  3. Li L, Gervasi N, Girault JA. Dendritic geometry shapes neuronal cAMP signalling to the nucleus. Nat Commun. 2015;6:6319.

    Article  CAS  Google Scholar 

  4. Luo J, McQueen PG, Shi B, Lee CH, Ting CY. Wiring dendrites in layers and columns. J Neurogenet. 2016;30:69–79.

    Article  Google Scholar 

  5. Kirkcaldie MT, Collins JM. The axon as a physical structure in health and acute trauma. J Chem Neuroanat. 2016;76:9–18.

    Google Scholar 

  6. Jones SL, Svitkina TM. Axon initial segment cytoskeleton: architecture, development, and role in neuron polarity. Neural Plast. 2016;2016:6808293.

    Article  Google Scholar 

  7. Philips T, Rothstein JD. Oligodendroglia: metabolic supporters of neurons. J Clin Invest. 2017;127:3271–80.

    Article  Google Scholar 

  8. Shipp S. Structure and function of the cerebral cortex. Curr Biol. 2007;17:R443–9.

    Article  CAS  Google Scholar 

  9. Briggs F. Organizing principles of cortical layer 6. Front Neural Circuits. 2010;4:3.

    PubMed  PubMed Central  Google Scholar 

  10. Kandel ER, Siegelbaum SA. Overview of synaptic transmission. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural sciences. 5th ed. New York: McGraw-Hill; 2012.

    Google Scholar 

  11. Holm TH, Lykke-Hartmann K. Insights into the pathology of the α3 Na+/K+-ATPase ion pump in neurological disorders; lessons from animal models. Front Physiol. 2016;7:209.

    Article  Google Scholar 

  12. Lacroix JJ, Campos FV, Frezza L, Bezanilla F. Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation. Neuron. 2013;79:651–7.

    Article  CAS  Google Scholar 

  13. Roux B. Ion channels and ion selectivity. Essays Biochem. 2017;61:201–9.

    Google Scholar 

  14. Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol. 2006;23:186–9.

    Article  Google Scholar 

  15. Henderson CJ, Butler SR, Glass A. The localization of equivalent dipoles of EEG sources by the application of electrical field theory. Electroencephalogr Clin Neurophysiol. 1975;39:117–30.

    Article  CAS  Google Scholar 

  16. Steriade M. Alertness, quiet sleep, dreaming. In: Peters A, Jones EG, editors. Cerebral cortex. New York: Plenum; 1991.

    Google Scholar 

  17. Marcuse LV, Schneider M, Mortati KA, Donnelly KM, Arnedo V, Grant AC. Quantitative analysis of the EEG posterior-dominant rhythm in healthy adolescents. Clin Neurophysiol. 2008;119:1778–81.

    Article  CAS  Google Scholar 

  18. van der Stelt O. Development of human EEG posterior alpha rhythms. Comment on quantitative analysis of the EEG posterior-dominant rhythm in healthy adolescents. Clin Neurophysiol. 2008;119:1701–2.

    Article  Google Scholar 

  19. Vaudano AE, Ruggieri A, Avanzini P, et al. Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks. Brain. 2017;140:981–97.

    Article  Google Scholar 

  20. Horne JA. Why we sleep: the functions of sleep in humans and other animals. Oxford: Oxford University Press; 1988.

    Google Scholar 

  21. Lopes da Silva F. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol. 1991;79:81–93.

    Article  CAS  Google Scholar 

  22. Toscani M, Marzi T, Righi S, Viggiano MP, Baldassi S. Alpha waves: a neural signature of visual suppression. Exp Brain Res. 2010;207:213–9.

    Article  Google Scholar 

  23. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  Google Scholar 

  24. Knyazev GG, Slobodskoj-Plusnin JY, Bocharov AV, Pylkova LV. The default mode network and EEG alpha oscillations: an independent component analysis. Brain Res. 2011;1402:67–79.

    Article  CAS  Google Scholar 

  25. Bowman AD, Griffis JC, Visscher KM, et al. Relationship between alpha rhythm and the default mode network: an EEG-fMRI study. J Clin Neurophysiol. 2017;34:527–33.

    Article  Google Scholar 

  26. Amzica F, Lopes Da Silva FH. Cellular substrates of brain rhythms. In: Shomer DL, Lopes da Silva FH, editors. Niedermeyer’s electroencephalography: basic principles, clinical applications and related fields. 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2017.

    Google Scholar 

  27. Kandel ER, Schwartz JH, Jessell TM. Principles of neural sciences. 5th ed. New York: McGraw-Hill; 2012.

    Google Scholar 

  28. Steriade M, Nunez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13:3252–65.

    Article  CAS  Google Scholar 

  29. Contreras D, Timofeev I, Steriade M. Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol. 1996;494:251–64.

    Article  CAS  Google Scholar 

  30. Marawar RA, Yeh HJ, Carnabatu CJ, Stern JM. Functional MRI correlates of resting-state temporal theta and delta EEG rhythm. J Clin Neurophysiol. 2017;34:69–76.

    Article  Google Scholar 

  31. Hofle N, Paus T, Reutens D, et al. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J Neurosci. 1997;17:4800–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriano Mecarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Brienza, M., Mecarelli, O. (2019). Neurophysiological Basis of EEG. In: Mecarelli, O. (eds) Clinical Electroencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-04573-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04573-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04572-2

  • Online ISBN: 978-3-030-04573-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics