Skip to main content
  • 3184 Accesses

Abstract

A synoptic assessment about intracranial invasive procedures is provided: particularly general and specific indications, most utilized methodologies, risks, and morbidity/mortality of the different techniques. In the context of focal pharmaco-resistant epilepsies, surgical resection of the epileptogenic zone (EZ) is the only therapeutic option for suppressing seizures. The aim of epilepsy surgery is the complete exeresis of the EZ, which is assumed to represent the cortical region responsible for the onset, early seizures organization, and propagation of ictal discharges and represents the minimum amount of cortex to be resected in order to achieve seizure freedom. Therefore the correct identification of its extent and organization remains a crucial objective. In many patients, intracranial/intracerebral invasive EEG (iEEG) recordings still represent the gold standard for the complete and exhaustive epilepsy surgery work-up, and, over the last years, considerable efforts have been made to develop advanced techniques able to improve the identification of the EZ. Many arguments can lead to the final decision to submit the patient to invasive recordings, a surgical procedure with both risks and surgical perspectives: in particular any discrepancies between anatomo-electro-clinical data, a negative MRI and a EZ close to high-functioning cortical areas. Two major approaches and methodologies are at present favored: subdural electrodes, requiring a large bone hole, and the positioning of grids and or strips, depending on the supposed localization of the EZ. Surgery is performed at the end of invasive recordings. The second one, SEEG, is considered a “three-dimensional” methodology, exploring predominantly network and connection between EZ and distant cortical areas, efficacy only if the primary hypothesis was correctly explored. Surgery can be delayed with respect to iEEG. Nowadays some epilepsy surgery centers highest in volume offer both SE and SEEG as intracranial strategies for seizure localization, depending on the patient particularity. The choice in between these two techniques is complex; it depends on the intrinsic patient characteristics but mostly on the peculiar experience of the epilepsy surgical unit. Methodologies, risks with advantages, and limits are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Ellenrieder N, Beltrachini L, Muravchik CH. Electrode and brain modeling in stereo-EEG. Clin Neurophysiol. 2012;123(9):1745–54.

    Google Scholar 

  2. Gloor P. Contributions of electroencephalography and electrocorticography to the neurosurgical treatment of the epilepsies. Adv Neurol. 1975;8:59–105.

    CAS  PubMed  Google Scholar 

  3. Englot DJ, Berger MS, Barbaro NM, et al. Factors associated with seizure freedom in the surgical resection of glioneuronal tumors. Epilepsia. 2012;53(1):51–7.

    PubMed  Google Scholar 

  4. Giulioni M, Rubboli G, Marucci G, et al. Seizure outcome of epilepsy surgery in focal epilepsies associated with temporomesial glioneuronal tumors: lesionectomy compared with tailored resection. J Neurosurg. 2009;111(6):1275–82.

    PubMed  Google Scholar 

  5. Thom M, Blumcke I, Aronica E. Long-term epilepsy-associated tumors. Brain Pathol. 2012;22(3):350–79.

    PubMed  Google Scholar 

  6. Maillard LG, Tassi L, Bartolomei F, Catenoix H, Dubeau F, Szurhaj W, Kahane P, Nica A, Marusic P, Mindruta I, Chassoux F, Ramantani G. Stereoelectroencephalography and surgical outcome in polymicrogyria-related epilepsy: a multicentric study. Ann Neurol. 2017;82(5):781–94.

    CAS  PubMed  Google Scholar 

  7. Mirandola L, Mai RF, Francione S, Pelliccia V, Gozzo F, Sartori I, Nobili L, Cardinale F, Cossu M, Meletti S, Tassi L. Stereo-EEG: diagnostic and therapeutic tool for periventricular nodular heterotopia epilepsies. Epilepsia. 2017;58(11):1962–71.

    CAS  PubMed  Google Scholar 

  8. Kahane P, Landré E, Minotti L, Francione S, Ryvlin P. The Bancaud and Talairach view on the epileptogenic zone: a working hypothesis. Epileptic Disord. 2006;8(Suppl 2):S16–26.

    PubMed  Google Scholar 

  9. Najm IM, Tassi L, Sarnat HB, Holthausen H, Russo GL. Epilepsies associated with focal cortical dysplasias (FCDs). Acta Neuropathol. 2014;128(1):5–19.

    CAS  PubMed  Google Scholar 

  10. Jayakar P. Chronic intracranial EEG monitoring in children: when, where and what? J Clin Neurophysiol. 1999;16(5):408–18.

    CAS  PubMed  Google Scholar 

  11. Herberhold T, Pieper T, KudernatschM PB, Hartlieb T, Weber K, Eitel H, Getzinger T, Holthausen H, Winkler P, Blümcke I, Staudt M. Invasive pre-surgical epilepsy diagnostics in children: the advantage of depth electrodes combined with subdural grids in the evaluation of focal cortical lesions. Klinische Neurophysiologie. 2014;45:01.

    Google Scholar 

  12. Fisher RS, Webber WR, Lesser RP, Arroyo S, Uematsu S. High frequency EEG activity at the start of seizures. J Clin Neurophysiol. 1992;9:441–8.

    CAS  PubMed  Google Scholar 

  13. Ikeda A, Terada K, Mikuni N, Burgess RC, Comair Y, Taki W, Hamano T, Kimura J, Luders HO, Shibasaki H. Subdural recordings of ictal DC shifts in neocortical seizures in humans. Epilepsia. 1996;37(7):662–74.

    CAS  PubMed  Google Scholar 

  14. Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain. 2014;137:183–96.

    PubMed  Google Scholar 

  15. Schiller Y, Cascino GD, Sharbrough FW. Chronic intracranial EEG monitoring for localizing the epileptogenic zone: an electro-clinical correlation. Epilepsia. 1998;39(12):1302–8.

    CAS  PubMed  Google Scholar 

  16. Singh S, Sandy S, Wiebe S. Ictal onset on intracranial EEG: do we know it when we see it? State of the evidence. Epilepsia. 2015;56(10):1629–38.

    PubMed  Google Scholar 

  17. Munari C, Bancaud J. The role of stereo-electro-encephalography (SEEG) in the evaluation of partial epileptic patients. In: Porter RJ, Morselli PL, editors. The epilepsies. London: Butterworths; 1987. p. 267–306.

    Google Scholar 

  18. Bartolomei F, Bettus G, Stam CJ, Guye M. Interictal network properties in mesial temporal lobe epilepsy: a graph theoretical study from intracerebral recordings. Clin Neurophysiol. 2013;124(12):2345–53.

    CAS  PubMed  Google Scholar 

  19. Ajmone-Marsan C. Preoperative electroencephalographic localization of large epileptogenic zones in the frontal and temporal lobes. Can J Neurol Sci. 1991;18(4 Suppl):564–5.

    CAS  PubMed  Google Scholar 

  20. Lieb JP, Joseph JP, Engel J Jr, Walker J, Crandall PH. Sleep state and seizure foci related to depth spike activity in patients with temporal lobe epilepsy. Electroencephalogr Clin Neurophysiol. 1980;49(5–6):538–57.

    CAS  PubMed  Google Scholar 

  21. Bancaud J, Talairach J, Bonis A, Schaub C, Szikla G, Morel P, Bordas-Ferer M. La stéréoencéphalographie dans l’épilepsie. Informations neuro-physio-pathologiques apportées par l’investigation fonctionnelle stéréotaxique. Paris: Masson; 1965.

    Google Scholar 

  22. Bekelis K, Radwan TA, Desai A, Moses ZB, Thadani VM, Jobst BC, Bujarski KA, Darcey TM, Roberts DW. Subdural interhemispheric grid electrodes for intracranial epilepsy monitoring: feasibility, safety, and utility: clinical article. J Neurosurg. 2012;117(6):1182–8.

    PubMed  Google Scholar 

  23. Serra C, Huppertz HJ, Kockro RA, Grunwald T, Bozinov O, Krayenbühl N, Bernays RL. Rapid and accurate anatomical localization of implanted subdural electrodes in a virtual reality environment. J Neurol Surg A Cent Eur Neurosurg. 2013;74(3):175–82.

    PubMed  Google Scholar 

  24. Taimouri V, Akhondi-Asl A, Tomas-Fernandez X, Peters JM, Prabhu SP, Poduri A, Takeoka M, Loddenkemper T, Bergin AM, Harini C, Madsen JR, Warfield SK. Electrode localization for planning surgical resection of the epileptogenic zone in pediatric epilepsy. Int J Comput Assist Radiol Surg 2013.

    Google Scholar 

  25. Bulacio JC, Jehi L, Wong C, Gonzalez-Martinez J, Kotagal P, Nair D, Najm I, Bingaman W. Long-term seizure outcome after resective surgery in patients evaluated with intracranial electrodes. Epilepsia. 2012;53(10):1722–30.

    PubMed  Google Scholar 

  26. Bouthillier A, Surbeck W, Weil AG, Tayah T, Nguyen DK. The hybrid operculo-insular electrode: a new electrode for intracranial investigation of perisylvian/insular refractory epilepsy. Neurosurgery. 2012;70(6):1574–80.

    PubMed  Google Scholar 

  27. Nespeca M, Wyllie E, Luders H, Rothner AD, Hahn J, Awad I, Dinner DS, Morris HH, Cruse R, Erenberg G, Kotagal P, Kanner A, Estes ML. EEG recording and functional localization studies with subdural electrodes in infants and young children. J Epilepsy. 1990;3:107–24.

    Google Scholar 

  28. Surbeck W, Bouthillier A, Weil AG, Crevier L, Carmant L, Lortie A, Major P, Nguyen DK. The combination of subdural and depth electrodes for intracranial EEG investigation of suspected insular (perisylvian) epilepsy. Epilepsia. 2011;52(3):458–66.

    PubMed  Google Scholar 

  29. Wellmer J, von der Groeben F, Klarmann U, Weber C, Elger CE, Urbach H, Clusmann H, von Lehe M. Risks and benefits of invasive epilepsy surgery workup with implanted subdural and depth electrodes. Epilepsia. 2012;53(8):1322–32.

    PubMed  Google Scholar 

  30. Taussig D, Dorfmüller G, Fohlen M, Jalin C, Bulteau C, Ferrand-Sorbets S, Chipaux M, Delalande O. Invasive explorations in children younger than 3 years. Seizure. 2012;21(8):631–8.

    PubMed  Google Scholar 

  31. Burneo JG, Steven DA, McLachlan RS, Parrent AG. Morbidity associated with the use of intracranial electrodes for epilepsy surgery. Can J Neurol Sci. 2006;33(2):223–7.

    PubMed  Google Scholar 

  32. Johnston JM Jr, Mangano FT, Ojemann JG, Park TS, Trevathan E, Smyth MD. Complications of invasive subdural electrode monitoring at St. Louis Children’s Hospital, 1994-2005. J Neurosurg. 2006;105(5 Suppl):343–7.

    PubMed  Google Scholar 

  33. Musleh W, Yassari R, Hecox K, Kohrman M, Chico M, Frim D. Low incidence of subdural gridrelated complications in prolonged pediatric EEG monitoring. Pediatr Neurosurg. 2006;42(5):284–7.

    PubMed  Google Scholar 

  34. Vale FL, Pollock G, Dionisio J, Benbadis SR, Tatum WO. Outcome and complications of chronically implanted subdural electrodes for the treatment of medically resistant epilepsy. Clin Neurol Neurosurg. 2013;115(7):985–90.

    CAS  PubMed  Google Scholar 

  35. Arya R, Mangano FT, Horn PS, Holland KD, Rose DF, Glauser TA. Adverse events related to extraoperative invasive EEG monitoring with subdural grid electrodes: a systematic review and meta-analysis. Epilepsia. 2013;54(5):828–39.

    PubMed  Google Scholar 

  36. Vadera S, Jehi L, Gonzalez-Martinez J, Bingaman W. Safety and long term seizure free outcomes of subdural grid placement in patients with a history of prior craniotomy. Neurosurgery. 2013;73(3):395–400.

    PubMed  Google Scholar 

  37. Bancaud J, Talairach J, Geier S, Scarabin JM. EEG et SEEG dans les tumeurs cérébrales et l’épilepsie. Paris: Edifor; 1973. p. 351.

    Google Scholar 

  38. Talairach J, Bancaud J. Stereotaxic approach to epilepsy. Methodology of anatomofunctional stereotaxic investigations. Progr Neurol Surg. 1973;5:297–354.

    Google Scholar 

  39. Talairach J, Bancaud J, Szikla G, Bonis A, Geier S. Approche nouvelle de la neurochirurgie de l’épilepsie. Méthodologie stéréotaxique et résultats thérapeutiques. Neurochirurgie. 1974;20(Suppl 1):1–240.

    PubMed  Google Scholar 

  40. Cossu M, Schiariti M, Francione S, et al. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy in infancy and early childhood. J Neurosurg Pediatr. 2012;9:290–300.

    PubMed  Google Scholar 

  41. Dorfmüller G, Ferrand-Sorbets S, Fohlen M, Bulteau C, Archambaud F, Delalande O, Chipaux M, Taussig D. Outcome of surgery in children with focal cortical dysplasia younger than 5 years explored by stereo-electroencephalography. Childs Nerv Syst. 2014;30(11):1875–83.

    PubMed  Google Scholar 

  42. Fohlen M, Jalin C, Soufflet C, Bulteau C, Dorfmuller G, Oliver V, Delalande O. Electrophysiological investigations in childhood epilepsy surgery. Neurochirurgie. 2008;54:347–52.

    CAS  PubMed  Google Scholar 

  43. Cardinale F, Cossu M, Castana L, Casaceli G, Schiariti MP, Miserocchi A, Fuschillo D, Moscato A, Caborni C, Arnulfo G, Lo Russo G. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72(3):353–66.

    PubMed  Google Scholar 

  44. Cossu M, Fuschillo D, Cardinale F, Castana L, Francione S, Nobili L, Lo Russo G. Stereo-EEGguided radio-frequency thermocoagulations of epileptogenic grey-matter nodular heterotopy. J Neurol Neurosurg Psychiatry. 2014;85:611–7.

    PubMed  Google Scholar 

  45. Guénot M, Isnard J, Catenoix H, Maguiére F, Sindou M. SEEG-guided RF-thermocoagulation of epileptic foci: a therapeutic alternative for drug-resistant non-operable partial epilepsies. Adv Tech Stand Neurosurg. 2011;36:61–78.

    PubMed  Google Scholar 

  46. Kahane P, Dubeau F. Intracerebral depth electrodes encephalography (stereoelectroencephalography). In: Ebersole JE, editor. Current practice of clinical encephalography. 4th ed; 2014.

    Google Scholar 

  47. Kahane P, Francione S. Stereoencephalography. In: Lüders HO, editor. Textbook of epilepsy surgery. London: Informa Healthcare; 2008. p. 649–58.

    Google Scholar 

  48. Kahane P, Minotti L, Hoffmann D, Lachaux JP, Ryvlin P. Invasive EEG in the definition of the seizure onset zone: depth electrodes. In: Rosenow F, Lüders HO, editors. Handbook of clinical neurophysiology, Presurgical assessment of the epilepsies with clinical neurophysiology and functional imaging, vol. 3. Amsterdam: Elsevier BV; 2004. p. 109–33.

    Google Scholar 

  49. Chui J, Manninen P, Valiante T, Venkatraghavan L. The anesthetic considerations of intraoperative electrocorticography during epilepsy surgery. Anesth Analg. 2013;117(2):479–86.

    CAS  PubMed  Google Scholar 

  50. Bindra A, Chouhan RS, Prabhakar H, Dash HH, Chandra PS, Tripathi M. Comparison of the effects of different anesthetic techniques on electrocorticography in patients undergoing epilepsy surgery—a bispectral index guided study. Seizure. 2012;21(7):501–7.

    PubMed  Google Scholar 

  51. Jayakar P, Dunoyer C, Dean P, Ragheb J, Resnick T, Morrison G, Bhatia S, Duchowny M. Epilepsy surgery in patients with normal or non-focal MRI scans: integrative strategies offer long-term seizure relief. Epilepsia. 2008;49(5):758–64.

    PubMed  Google Scholar 

  52. Palmini A, Gambardella A, Andermann F, Dubeau F, da Costa JC, Olivier A, Tampieri D, Gloor P, Quesney F, Andermann E, et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol. 1995;37(4):476–87.

    CAS  PubMed  Google Scholar 

  53. Gelinas JN, Battison AW, Smith S, Connolly MB, Steinbok P. Electrocorticography and seizure outcomes in children with Lesional epilepsy. Childs Nerv Syst. 2011;27(3):381–90.

    PubMed  Google Scholar 

  54. Tripathi M, Garg A, Gaikwad S, Bal CS, Chitra S, Prasad K, Dash HH, Sharma BS, Chandra PS. Intra-operative electrocorticography in lesional epilepsy. Epilepsy Res. 2010;89(1):133–41.

    CAS  PubMed  Google Scholar 

  55. Fish DR, Gloor P, Quesney FL, et al. Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Pathophysiological implications. Brain. 1993;116:397–414.

    PubMed  Google Scholar 

  56. Kahane P, Tassi L, Francione S, et al. Electroclinical manifestations elicited by intracerebral electric stimulation “shocks” in temporal lobe epilepsy. Neurophysiol Clin. 1993;23:305–26.

    CAS  PubMed  Google Scholar 

  57. Jayakar P, Resnick TJ, Duchowny MS, Alvarez LA. A safe and effective paradigm to functionally map the cortex in childhood. J Clin Neurophysiol. 1992;9(2):288–93.

    CAS  PubMed  Google Scholar 

  58. Gordon B, Lesser RP, Rance NE, et al. Parameters for direct cortical electrical stimulation in the human: histopathologic confirmation. Electroencephalogr Clin Neurophysiol. 1990;75:371–7.

    CAS  PubMed  Google Scholar 

  59. Balestrini S, Francione S, Mai R, Castana L, Casaceli G, Marino D, Provinciali L, Cardinale F, Tassi L. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study. Brain. 2015;138(Pt 9):2596–607.

    PubMed  Google Scholar 

  60. Chassagnon S, Minotti L, Krémer S, Hoffmann D, Kahane P. Somatosensory, motor and reaching/grasping responses to direct electrical stimulations of the human cingulate motor areas. J Neurosurg. 2008;109:593–604.

    PubMed  Google Scholar 

  61. Selimbeyoglu A, Parvizi J. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front Hum Neurosci. 2010;4:46.

    PubMed  PubMed Central  Google Scholar 

  62. Lobel E, Kahane P, Leonards U, Grosbras MH, Lehericy S, Le Bihan D, Berthoz A. Localization of the human frontal eye fields: anatomical and functional findings from fMRI and intracerebral electrical stimulation. J Neurosurg. 2001;95:804–15.

    CAS  PubMed  Google Scholar 

  63. Lucas TH 2nd, GM MK 2nd, Ojemann GA. Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. J Neurosurg. 2004;101(3):449–57.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Tassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Tassi, L. (2019). Invasive EEG. In: Mecarelli, O. (eds) Clinical Electroencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-04573-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04573-9_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04572-2

  • Online ISBN: 978-3-030-04573-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics