Skip to main content
  • 3183 Accesses

Abstract

The majority of routine EEGs are requested for epilepsy diagnosis or for epilepsy management but, in these cases, EEGs are usually without epileptiform abnormalities. As a matter of fact, after first unprovoked epileptic seizures, 50–80% of patients have an EEG without epileptiform abnormalities. To increase the diagnostic sensitivity of standard EEG, some activation procedures are traditionally used, as they can enhance, or elicit, interictal or ictal epileptiform patterns.

The most common EEG activation procedures are represented by HyperVentilation (HV), Intermittent Photic Stimulation (IPS), sleep and sSleep dDeprivation (SD). These activation techniques, although consolidated in routine electroencephalography, still present some controversial aspects, both for the standardisation of their execution as well as for their pathophysiogenic mechanisms. Finally, we will also describe other methods of EEG activation performed less frequently, above all applicable for the evocation of reflex seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flink R, Pedersen B, Guekht AB, et al. Guidelines for the use of EEG methodology in the diagnosis of epilepsy. Acta Neurol Scand. 2002;106:1–7.

    CAS  PubMed  Google Scholar 

  2. Sinha SR, Sullivan L, Sabau D, et al. American Clinical Neurophysiology Society Guideline 1:minimum technical requirements for performing clinical electroencephalography. J Clin Neurophysiol. 2016;33:303–7.

    Google Scholar 

  3. Kane N, Grocott L, Kandler R, Lawrence S, Pang C. Hyperventilation during electroencephalography:safety and efficacy. Seizure. 2014;23:129–34.

    Google Scholar 

  4. Craciun L, Varga ET, Mindruta I, et al. Diagnostic yeld of five minutes compared to three minutes hyperventilation during electroencephalography. Seizure. 2015;30:90–2.

    PubMed  Google Scholar 

  5. Tatum WO, Rubboli G, Kaplan PW, et al. Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clin Neurophysiol. 2018;129:1056–82.

    CAS  PubMed  Google Scholar 

  6. Gibbs F, Davis H, Lennox W. The electro-encephalogram in epilepsy and in conditions of impaired consciousness. Arch Neurol Psychiatry. 1935;34:1133–48.

    Google Scholar 

  7. Mendez OE, Brenner RP. Increasing the yield of EEG. J Clin Neurophysiol. 2006;23:282–93.

    PubMed  Google Scholar 

  8. Lum LM, Connolly MB, Farrel K, Wong PK. Hyperventilation-induced high-amplitude rhythmic slowing with altered awareness: a video-EEG comparison with absence seizures. Epilepsia. 2002;43:1372–8.

    PubMed  Google Scholar 

  9. Barker A, Ng J, Rittey CD, Kandler RH, Mordekar SR. Outcome of children with hyperventilation-induced high-amplitude rhythmic slow activity with altered awareness. Dev Med Child Neurol. 2012;54:1001–5.

    PubMed  Google Scholar 

  10. Salvati KA, Beenhakker MP. Out of thin air: hyperventilation-trigger seizures. Brain Res;2017 (online).

    Google Scholar 

  11. Shafi MM, Westover MB. EEG activation methods. In: Schomer DL, Lopes da Silva Eds FH, editors. Niedermeyer’s electroencephalography. Basic principles, clinical applications, and related fields. 7th ed. Oxford: Oxford University Press;2018. p. 247–65.

    Google Scholar 

  12. Mecarelli O, Pulitano P, Vicenzini E, Vanacore N, Accornero N, De Marinis M. Observations on EEG patterns in neurally-mediated syncope: an inspective and quantitative study. Neurophysiol Clin. 2004;34:203–7.

    CAS  PubMed  Google Scholar 

  13. Guaranha MSB, Garzon E, Buchpiguel CA, Tazima S, Yacubian EMT, Sakamoto AC. Hyperventilation revisited: physiological effects and efficacy on focal seizure activation in the era of video-EEG monitoring. Epilepsia. 2005;46:69–75.

    PubMed  Google Scholar 

  14. Baldin E, Hauser WA, Buchhalter JR, Hesdorffer DC, Ottman R. Utility of EEG activation procedures in epilepsy: a population-based study. J Clin Neurophysiol. 2017;34:512–9.

    PubMed  PubMed Central  Google Scholar 

  15. Dlamini N, Goyal S, Jarosz J, Hampton T, Siddiqui A, Hughes E. Paroxysmal episodes, “re-buildup” phenomenon and Moyamoya disease. Epileptic Disord. 2009;11:324–8.

    PubMed  Google Scholar 

  16. Abubakr A, Iteayni I, Wambacq I. The efficacy of routine hyperventilation for seizure activation during prolonged video-electroencephalography monitoring. J Clin Neurosci. 2010;17:1503–5.

    PubMed  Google Scholar 

  17. Benbadis SR, Johnson K, Anthony K, et al. Induction of psychogenic non-epileptic seizures without placebo. Neurology. 2000;55:1904–5.

    CAS  PubMed  Google Scholar 

  18. Achenbach-Ng J, Siao TC, Mavroudakis N, Chiappa KH, Kiers L. Effects of routine hyperventilation on PCO2 and PO2 in normal subjects: implications for EEG interpretations. J Clin Neurophysiol. 1994;11:220–5.

    CAS  PubMed  Google Scholar 

  19. Duarte J, Markus H, Harrison MJG. Changes in cerebral blood flow as monitored by transcranial Doppler during voluntary hyperventilation and their effect on the electroencephalogram. J Neuroimg. 1995;5:209–11.

    CAS  Google Scholar 

  20. Yamatani M, Konishi T, Murakami M, Okuda T. Hyperventilation activation on EEG recording in children with epilepsy. Pediatr Neurol. 1995;13:42–5.

    CAS  PubMed  Google Scholar 

  21. Van der Worp HB, Wienecke GH, Van Huffelen AC. Quantitative EEG during progressive hypocarbia and hypoxia. Hyperventilation-induced EEG changes reconsidered. Electroencephalogr Clin Neurophysiol. 1991;79:335–41.

    PubMed  Google Scholar 

  22. Patel VM, Maulsby RL. How hyperventilation alters the electroencephalogram: a review of controversial viewpoints emphasizing neurophysiological mechanisms. J Clin Neurophysiol. 1987;4:101–20.

    CAS  PubMed  Google Scholar 

  23. Esquivel E, Chaussain M, Plouin P, Ponsot G, Arthuis M. Physical exercise and voluntary hyperventilation in childhood absence epilepsy. Electroencephalogr Clin Neurophysiol. 1991;79:127–32.

    CAS  PubMed  Google Scholar 

  24. Kane N, Acharya J, Benickzy S, et al. A revised glossary of term most commonly used by clinical electroencephalographers and uptated proposal for the report format of the EEG findings. Revision 2017. Clin Neurophysiol Practice. 2017 ;2:170–85.

    Google Scholar 

  25. Adrian E, Matthews B. The Berger rhythm: potential changes from the occipital lobes in man. Brain. 1934;57:355–85.

    Google Scholar 

  26. Walter W, Dovey V, Shipton H. Analysis of the electrical response of the human cortex to photic stimulation. Nature. 1946;158:540–1.

    CAS  PubMed  Google Scholar 

  27. Kasteleijn-Nolst Trenité DG. Photosensitivity in epilepsy. Electrophysiological and clinical correlates. Acta Neurol Scand Suppl. 1989;125:3–149.

    PubMed  Google Scholar 

  28. Kasteleijn-Nolst Trenité DG. Intermittent photic stimulation as an activation method for electroencephalographic screening of aircrew applicants. Epilepsy Behav. 2005;6:21–6.

    PubMed  Google Scholar 

  29. Rubboli G, Parra J, Seri S, Takahashi T, Thomas P. EEG diagnostic procedures and special investigations in the assessment of photosensitivity. Epilepsia. 2004;45:35–9.

    PubMed  Google Scholar 

  30. Kasteleijn-Nolst Trenité DG, Rubboli G, Hirsch E, et al. Methodology of photic stimulation revisited: updated European algorithm for visual stimulation in the EEG laboratory. Epilepsia. 2012;53:16–24.

    PubMed  Google Scholar 

  31. Waltz S, Christen H-J, Doose H. The different patterns of the photoparoxysmal response – a genetic study. Electroencephalogr Clin Neurophysiol. 1992;82:138–45.

    Google Scholar 

  32. Doose H, Gerken H. On the genetics of EEG anomalies in childhood (1)-(IV). Photoconvulsive reaction. Neuropediatrics. 1973;4:162–71.

    CAS  Google Scholar 

  33. Trojaborg W. EEG abnormmalities in 5.893 jet pilot applicants registered in a 20-year period. Clin EEG Electroenceph. 1992;23:72–8.

    CAS  Google Scholar 

  34. Gregory RP, Oates T, Merry RT. Electroencephalogram epileptiform abnormalities in candidates for aircrew training. Electroencephalogr Clin Neurophysiol. 1993;86:75–7.

    CAS  PubMed  Google Scholar 

  35. So EL, Ruggles KH, Ahmann PA, Olson KA. Prognosis of photoparoxysmal response in nonepileptic patients. Neurology. 1193;43:1719–22.

    Google Scholar 

  36. De Graaf AS, Lombard CJ, Claasen DA. Influence of ethnic and geographic factors on the classic photoparoxysmal response in the electroencephalogram of epilepsy patients. Epilepsia. 1995;36:210–23.

    Google Scholar 

  37. Jayakar P, Chiappa KH. Clinical correlations of photoparoxysmal responses. Electroencephalogr Clin Neurophysiol. 1990;75:251–4.

    CAS  PubMed  Google Scholar 

  38. Kasteleijn-Nolst Trenité DG, Guerrini R, Binnie CD, et al. Visual sensitivity and epilepsy: a proposed terminology and classification for clinical and EEG phenomenology. Epilepsia. 2001;42:692–701.

    PubMed  Google Scholar 

  39. Stephani U, Tauer U, Koeleman B, Pinto D, Neubauer BA, Lindhout D. Genetics of photosensitivity (photopharoxysmal response): a review. Epilepsia. 2004;45(s1):19–23.

    CAS  PubMed  Google Scholar 

  40. Viravan S, Go C, Ochi A, Akiyama T, Carter Snead O, Otsubo H. Jeavons syndrome exisisting as occipital cortex initiating generalized epilepsy. Epilepsia. 2011;5:1273–9.

    Google Scholar 

  41. Vaudano AE, Ruggieri A, Tondelli M, et al. The visual system in eyelid myoclonia with absences. Ann Neurol. 2014;76:412–27.

    PubMed  Google Scholar 

  42. Galizia EC, Myers CT, Leu C, et al. CDH2 variants as a risk factor for photosensitivity in epilepsy. Brain. 2015;138:1198–207.

    PubMed  PubMed Central  Google Scholar 

  43. Rubboli G, Meletti S, Gardella E, et al. Photic reflex myoclonus: a neurophysiological study in progressive myoclonic epilepsies. Epilepsia. 1999;40:50–8.

    PubMed  Google Scholar 

  44. Guerrini R, Dravet C, Genton P, et al. Idiopathic photosensitive occipital lobe epilepsy. Epilepsia. 1995;36:883–91.

    CAS  PubMed  Google Scholar 

  45. Giraldez BG, Serratosa JM. Jeavons syndrome as an occipital cortex initiated generalized epilepsy: further evidence for a patient with a photic-induced occipital seizure. Seizure. 2015;32:72–4.

    PubMed  Google Scholar 

  46. Wilkins AJ, Bonanni P, Porciatti V, Guerrini R. Physiology of human photosensitivity. Epilepsia. 2004;45:7–13.

    PubMed  Google Scholar 

  47. Porciatti V, Bonanni P, Fiorentini A, Guerrini R. Lack of cortical contrast gain control in human photosensitive epilepsy. Nat Neurosci. 2000;3:259–63.

    CAS  PubMed  Google Scholar 

  48. Siniatchkin M, Moeller F, Shepherd A, Siebner H, Stephani U. Altered cortical visual processing in individuals with a spreading photoparoxysmal EEG response. Eur J Neurosci. 2007;26:529–36.

    PubMed  Google Scholar 

  49. Tsai JJ, Norcia AM, Ales JM, Wade AR. Constrast gain control abnormalities in idiopathic generalized epilepsy. Ann Neurol. 2011;70:574–82.

    PubMed  PubMed Central  Google Scholar 

  50. Chiappa KH, Hill RA, Huang-Hellinger F, Jenkins BG. Photosensitive epilepsy studied by functional magnetic resonance imaging and magnetic resonance spectroscopy. Epilepsia. 1999;40(Suppl 4):3–7.

    PubMed  Google Scholar 

  51. Hill RA, Chiappa KH, Huang-Hellinger F, Jenkins BG. Hemodynamic and metabolic aspects of photosensitive epilepsy revealed by functional magnetic resonance imaging and magnetic resonance spectroscopy. Epilepsia. 1999;40:912–20.

    CAS  PubMed  Google Scholar 

  52. Moeller F, Siebner HR, Ahlgrimm N, et al. fMRI activation during spike and wave discharges evoked by photic stimulation. Neuroimage. 2009;48:682–95.

    PubMed  Google Scholar 

  53. Strigaro G, Falletta L, Varrasi C, et al. Overactive visuomotor connections underlie the photoparoxysmal response. A TMS study. Epilepsia. 2015;56:1828–35.

    PubMed  Google Scholar 

  54. Suppa A, Rocchi L, Li Voti P, et al. The photoparoxysmal response reflects abnormal early visuomotor integration in the human motor cortex. Brain Stimul. 2015;8:1151–61.

    CAS  PubMed  Google Scholar 

  55. Vaudano AE, Ruggieri A, Avanzini P, et al. Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks. Brain. 2017;140:981–97.

    PubMed  PubMed Central  Google Scholar 

  56. Fisher RS, Harding G, Erba G, Barkley GL, Wilkins A. Photic- and pattern-induced seizures:a review for the Epilepsy Foundation of America Working Group. Epilepsia. 2005;46:1426–41.

    Google Scholar 

  57. Radhakrishnan K, St.Louis EK, Johnson JA, McClelland RL, Westmoreland BF, Klass DW. Pattern-sensitive epilepsy:electroclinical characteristics, natural hystory, and delineation of the epileptic syndrome. Epilepsia. 2005;46:48–58.

    Google Scholar 

  58. Takahashi T, Nakasato N, Yokoyama H, et al. Low-luminance isual stimuli compared with stroboscopic IPS in eliciting PPR in photosensitive patients. Epilepsia. 1999;40(Suppl 4):44–9.

    PubMed  Google Scholar 

  59. Koutroumanidis M, Tsatsou K, Sanders S, et al. Fixation-off sensitivity in epilepsies other than the idiopathic epilepsies of childhood with occipital paroxysms: a 12 year clinical-videoEEG study. Epileptic Disord. 2009;11:20–36.

    PubMed  Google Scholar 

  60. Brigo F, Rossini F, Stefani A, et al. Fixation-off sensitivity. Clin Neurophysiol. 2013;124:221–7.

    CAS  PubMed  Google Scholar 

  61. Krakow K, Baxendale SA, Maguire EA, et al. Fixation-off sensitivity as a model of continuous epileptiform discharges: electroencephalographic, neuropsycological, and functional MRI findings. Epilepsy Res. 2000;42:1–6.

    CAS  PubMed  Google Scholar 

  62. Mecarelli O, Gregori B, Gilio F, et al. Effects of repetitive transcranial magnetic stimulation in a patient with fixation-off sensitivity. Exp Brain Res. 2006;173:180–4.

    CAS  PubMed  Google Scholar 

  63. Shouse MN, da Silva AM, Sammaritano M. Circadian rhythm, sleep, and epilepsy. J Clin Neurophysiol. 1996;13:32–50.

    CAS  PubMed  Google Scholar 

  64. Foldvary-Schaefer N, Grigg-Damberger M. Sleep and epilepsy: what we know, don’t know, and need to know. J Clin Neurophysiol. 2006;23:4–20.

    PubMed  Google Scholar 

  65. Parrino L, Halasz P, Tassinari CA, Terzano MG. Cap, epilepsy and motor events during sleep: the unifying role of arousal. Sleep Med Rev. 2006;10:267–85.

    PubMed  Google Scholar 

  66. Bruni O, Novelli L, Luchetti A, et al. Reduced NREM sleep instability in benign childhood epilepsy with centro-temporal spikes. Clin Neurophysiol. 2010;121:665–71.

    PubMed  Google Scholar 

  67. Giorgi FS, Maestri M, Guida M, et al. Cyclic alternating pattern and interictal epileptiform discharges during morning sleep after sleep deprivation in temporal lobe epilepsy. Epilepsy Behav. 2017;73: 131–6.

    PubMed  Google Scholar 

  68. Ellingson RJ, Wilken K, Bennett DR. Efficacy of sleep deprivation as an activation procedure in epilepsy patients. J Clin Neurophysiol. 1984;1:83–101.

    CAS  PubMed  Google Scholar 

  69. Degen R, Degen HE. Sleep and sleep deprivation in epileptology. Epilepsy Res Suppl. 1991;2:235–60.

    CAS  PubMed  Google Scholar 

  70. Leach JP, Stephen LJ, Salveta C, Brodie MJ. Wich electroencephalography (EEG) for epilepsy? The relative usefulness of different EEG protocols in patients with possible epilepsy. J Neurol Neurosurg Psychiatry. 2006;77:1040–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gustafsson G, Brostrom A, Ulander M, Vrethem M, Svanborg E. Occurrence of epileptiform discharges and sleep during EEG recordings in children after melatonin intake versus sleep deprivation. Clin Neurophysiol. 2015;126:1493–7.

    PubMed  Google Scholar 

  72. Giorgi FS, Perini D, Maestri M, et al. Usefulness of a simple sleep-deprived EEG protocol for epilepsy diagnosis in de novo subjects. Clin Neurophysiol. 2013;124:2101–7.

    PubMed  Google Scholar 

  73. Renzel R, Baumann CR, Poryazova R. EEG after sleep deprivation is a sensitive tool in the first diagnosis of idiopathic generalized but not focal epilepsy. Clin Neurophysiol. 2016;127:209–13.

    PubMed  Google Scholar 

  74. Fountain NB, Kim JS, Lee SI. Sleep deprivation activates epileptiform discharges independent of the activating effects of sleep. J Clin Neurophysiol. 1998;15:69–75.

    CAS  PubMed  Google Scholar 

  75. Badawy RAB, Curatolo JM, Newton M, Bercovic SF, Macdonnell RAL. Sleep deprivation increases cortical excitability in epilepsy. Neurology. 2006;67:1018–22.

    CAS  PubMed  Google Scholar 

  76. Khrishnan V, Chang BS, Schomer DL. Normal EEG in wakefulness and sleep: adults and elderly. In: Schomer DL, Lopes da Silva FH, editors. Niedermeyer’s electroencephalography. Basic principles, clinical applications, and related fields. 7th ed. Oxford: Oxford University Press;2018. p. 202–28.

    Google Scholar 

  77. Hogan T, Sundaram M. Rhythmic auditory stimulation in generalized epilepsy. Electroencephalogr Clin Neurophysiol. 1989;72:455–8.

    CAS  PubMed  Google Scholar 

  78. De Marco P, Tassinari CA. Estreme somatosensory evoked potential (ESEP): an EEG sign forecasting the possible occurrence of seizures in children. Epilepsia. 1981;22:569–75.

    PubMed  Google Scholar 

  79. Hitomi T, Ikeda A, Matsumoto R, et al. Generators and temporal succession of giant somatosensory evoked potentials in cortical reflex myoclonus: epilcortical recording from sensorimotor cortex. Clin Neurophysiol. 2006;117:1481–6.

    Google Scholar 

  80. Visani E, Canafoglia L, Rossi Sebastiano D, et al. Giant SEPs and SEP-recovery function in Unverricth-Lunborg disease. Clin Neurophysiol. 2013;124:1013–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Patrizia Pulitano for her help in selecting and editing the EEG figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriano Mecarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mecarelli, O. (2019). Activation Procedures. In: Mecarelli, O. (eds) Clinical Electroencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-04573-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04573-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04572-2

  • Online ISBN: 978-3-030-04573-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics