Skip to main content

Hydrogen Production Through Solar-Driven Water Splitting: Cu(I) Oxide-Based Semiconductor Nanoparticles as the Next-Generation Photocatalysts

  • Chapter
  • First Online:
Nanostructured Materials for Energy Related Applications

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 24))

  • 832 Accesses

Abstract

Production of clean fuels like H2 using renewable sources such as sunlight, through photoelectrochemical (PEC) system, is one of the promising approaches. For large-scale applications of the PEC devices, the photocatalyst used should be of low cost, quite stable, and with high conversion efficiency for H2 production. This chapter describes the application of Cu(I)-based binary and ternary oxide photocatalysts toward solar H2 generation. Due to many advantages of Cu(I)-based oxides, including low bandgap energy, suitable band positions, high charge carrier mobility, and most importantly low cost and nontoxic nature, it has received significant attention in PEC water splitting reaction. Different synthetic routes, electrodeposition, atomic layer deposition, anodization, chemical vapor deposition, e-beam evaporation, pulsed laser deposition, sputtering, successive ionic layer adsorption and reaction, sol-gel, spray pyrolysis, thermal oxidation, etc., have been explored to obtain efficient Cu2O thin films. Employing suitable substrate offering better electrical connectivity facilitates the hole transport mechanism leading to improvement of water reduction process. Various co-catalysts have been identified, and application of different other compounds like metal oxides, carbon-based derivatives, etc. influences the separation of the photogenerated charge carriers, thereby enhancing the overall performance and stability of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun Maity .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shyamal, S., Satpati, A.K., Maity, A., Bhattacharya, C. (2019). Hydrogen Production Through Solar-Driven Water Splitting: Cu(I) Oxide-Based Semiconductor Nanoparticles as the Next-Generation Photocatalysts. In: Rajendran, S., Naushad, M., Balakumar, S. (eds) Nanostructured Materials for Energy Related Applications. Environmental Chemistry for a Sustainable World, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-04500-5_8

Download citation

Publish with us

Policies and ethics