Skip to main content

Design and Equilibrium Control of a Force-Balanced One-Leg Mechanism

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11289))

Included in the following conference series:

Abstract

The problem of equilibrium is critical for planning, control, and analysis of legged robot. Control algorithms for legged robots use the equilibrium criteria to avoid falls. The computational efficiency of the equilibrium tests is critical. To comply with this it is necessary to calculate the horizontal momentum rotation for every moment. For arbitrary contact geometries, more complex and computationally-expensive techniques are required. On the other hand designing equilibrium controllers for legged robots is a challenging problem. Nonlinear or more complex control systems have to be designed, complicating the computational cost and demanding robust actuators. In this paper, we propose a force-balanced mechanism as a building element for the synthesis of legged robots that can be easily balance controlled. The mechanism has two degrees of freedom, in opposition to the more traditional one degree of freedom linkages generally used as legs in robotics. This facilitates the efficient use of the “projection of the center of mass” criterion with the aid of a counter rotating inertia, reducing the number of calculations required by the control algorithm. Different experiments to balance the mechanism and to track unstable set-point positions have been done. Proportional error controllers with different strategies as well as learning approaches, based on an artificial intelligence method namely artificial hydrocarbon networks, have been used. Dynamic simulations results are reported. Videos of experiments will be available at: https://sites.google.com/up.edu.mx/smart-robotic-legs/.

This research has been funded by Universidad Panamericana through the grant “Fomento a la Investigación UP 2017”, under project code UP-CI-2017-ING-MX-03, and partially supported by Google Research Awards for Latin America 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wieber, P.-B., Tedrake, R., Kuindersma, S.: Modeling and control of legged robots. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, 2nd edn, pp. 1203–1234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_48

    Chapter  Google Scholar 

  2. Rebula, J.R., Neuhaus, P.D., Bonnlander, B.V., Johnson, M.J., Pratt, J.E.: A controller for the LittleDog quadruped walking on rough terrain. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1467–1473 (2007)

    Google Scholar 

  3. Yoshida, E., Kanoun, O., Esteves, C., Laumond, J.P.: Task-driven support polygon reshaping for humanoids. In: Proceedings of the 2006 6th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, pp. 208–213 (2006)

    Google Scholar 

  4. Del Prete, A., Tonneau, S., Mansard, N.: Fast algorithms to test static equilibrium for legged robots. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 2016, pp. 1601–1607 (2016)

    Google Scholar 

  5. Najafi, E., Lopes, G.A.D., Babuska, R.: Balancing a legged robot using state-dependent Riccati equation control. IFAC Proc. Volumes 47(3), 2177–2182 (2014)

    Article  Google Scholar 

  6. Grasser, F., D’Arrigo, A., Colombi, S., Rufer, A.C.: JOE: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. 49(1), 107–114 (2002)

    Article  Google Scholar 

  7. Kashki, M., Zoghzoghy, J., Hurmuzlu, Y.: Adaptive control of inertially actuated bouncing robot. IEEE Trans. Robot. 33(3), 509–522 (2017)

    Article  Google Scholar 

  8. Wensing, P., Wang, A., Seok, S., Otten, D., Lang, J., Kim, S.: Proprioceptive actuator design in the MIT Cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE/ASME Trans. Mechatron. 22(5), 2196–2207 (2017)

    Article  Google Scholar 

  9. Komoda, K., Wagatsuma, H.: Energy-efficacy comparisons and multibody dynamics analyses of legged robots with different closed-loop mechanisms. Multibody Syst. Dyn. 40, 123–153 (2017)

    Article  MathSciNet  Google Scholar 

  10. van der Wijk, V., Herder, J.L.: Synthesis of dynamically balanced mechanisms by using counter-rotary countermass balanced double pendula. ASME J. Mech. Des. 131(11), 111003-1–111003-8 (2009). https://doi.org/10.1115/1.3179150

    Article  Google Scholar 

  11. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-2600-0

    Book  Google Scholar 

  12. Munoz de Cote, E., Garcia, E.O., Morales, E.F.: Transfer learning by prototype generation in continuous spaces. Adapt. Behav. 24(6), 464–478 (2016)

    Article  Google Scholar 

  13. Molina, A., Ponce, H., Ponce, P., Tello, G., Ramirez, M.: Artificial hydrocarbon networks fuzzy inference systems for CNC machines position controller. Int. J. Adv. Manuf. Technol. 72(9–12), 1465–1479 (2014)

    Article  Google Scholar 

  14. Nagabandi, A., Yang, G., Asmar, T., Kahn, G., Levine, S., Fearing, R.S.: Neural network dynamics models for control of under-actuated legged millirobots. arXiv:1711.05253 (2017)

  15. Sung-Kwun, O., Pedrycz, W., Rho, S.-B., Ahn, T.-C.: Parameter estimation of fuzzy controlle and its application to inverted pendulum. Eng. Appl. Artif. Intell. 17(1), 37–60 (2004)

    Article  Google Scholar 

  16. Ponce, H., Ponce, P.: Artificial organic networks. In: In 2011 IEEE Conference on Electronics, Robotics and Automotive Mechanics, pp. 29–34. IEEE, Cuernavaca (2011)

    Google Scholar 

  17. Ponce-Espinosa, H., Ponce-Cruz, P., Molina, A.: Artificial Organic Networks. SCI, vol. 521. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02472-1

    Book  Google Scholar 

  18. Ponce, H., Ponce, P., Molina, A.: The development of an artificial organic networks toolkit for LabVIEW. J. Comput. Chem. 36(7), 478–492 (2015)

    Article  Google Scholar 

  19. Ponce, H.: A novel artificial hydrocarbon networks based value function approximation in hierarchical reinforcement learning. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) MICAI 2016. LNCS (LNAI), vol. 10062, pp. 211–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62428-0_18

    Chapter  Google Scholar 

  20. Ponce, H., Ponce, P., Molina, A.: Artificial hydrocarbon networks fuzzy inference system. Math. Probl. Eng. 1–13, 2013 (2013)

    Google Scholar 

  21. Ponce, H., Ponce, P., Molina, A.: A novel robust liquid level controller for coupled-tanks systems using artificial hydrocarbon networks. Expert Syst. Appl. 42(22), 8858–8867 (2015)

    Article  Google Scholar 

  22. Rao, A.: A survey of numerical method for optimal control. Adv. Astronaut. Sci. 135, 497–528 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiram Ponce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ponce, H., Acevedo, M. (2018). Design and Equilibrium Control of a Force-Balanced One-Leg Mechanism. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Computational Intelligence. MICAI 2018. Lecture Notes in Computer Science(), vol 11289. Springer, Cham. https://doi.org/10.1007/978-3-030-04497-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04497-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04496-1

  • Online ISBN: 978-3-030-04497-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics