Skip to main content

Finding Optimal Farming Practices to Increase Crop Yield Through Global-Best Harmony Search and Predictive Models, a Data-Driven Approach

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11289))

Included in the following conference series:

  • 849 Accesses

Abstract

Increasing crops’ yields to meet the world’s demand for food is one of the great challenges of these times. To achieve this, farmers must make the best decisions based on the resources available for them. In this paper, we propose the use of Global-best Harmony Search (GHS) to find the optimal farming practices and increase the yields according to the local climate and soil characteristics, following the principles of site-specific agriculture. We propose to build an aptitude function based on a random forest model trained on farms’ data combined with open data sources for climate and soil. The result is an optimizer that uses a data-driven approach and generates information on the optimized farming practices, allowing the farmer to harness the full potential of his land. The approach was tested on a case-study on maize in the state of Chiapas, Mexico, where the adoption of the practices suggested by our approach was estimated to increase average yield by 1.7 ton/ha, contributing to closing the yield gap. The proposal has the potential to be scaled to other locations, other response variables and other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://conservacion.cimmyt.org/es/hubs/683 - Bitácora Electrónica MasAgro.

  2. 2.

    http://clima.inifap.gob.mx/lnmysr/Estaciones.

  3. 3.

    http://www.inegi.org.mx/geo/contenidos/recnat/edafologia/default.aspx.

  4. 4.

    https://qgis.org/en/site/index.html.

References

  1. van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z.: Yield gap analysis with local to global relevance—a review. Field Crops Res. 143, 4–17 (2012)

    Article  Google Scholar 

  2. Zader, A.: Food and agriculture. In: Routledge Handbook of Environment and Society in Asia, p. 237 (2014)

    Google Scholar 

  3. Mase, A.S., Prokopy, L.S.: Unrealized potential: a review of perceptions and use of weather and climate information in agricultural decision making. Weather. Clim. Soc. 6(1), 47–61 (2014)

    Article  Google Scholar 

  4. Tilman, D., Balzer, C., Hill, J., Befort, B.L.: Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 108(50), 20260–20264 (2011)

    Article  Google Scholar 

  5. Foley, J.A., et al.: Solutions for a cultivated planet. Nature 478(7369), 337 (2011)

    Article  Google Scholar 

  6. Reid, W.V., Berkes, F., Wilbanks, T.J., Capistrano, D., et al.: Bridging Scales and Knowledge Systems: Concepts and Applications in Ecosystem Assessment. Island Press, Washington (2006)

    Google Scholar 

  7. Rasmussen, P.E., Goulding, K.W., Brown, J.R., Grace, P.R., Janzen, H.H., Körschens, M.: Long-term agroecosystem experiments: assessing agricultural sustainability and global change. Science 282(5390), 893–896 (1998)

    Article  Google Scholar 

  8. Samberg, L.H., Gerber, J.S., Ramankutty, N., Herrero, M., West, P.C.: Subnational distribution of average farm size and smallholder contributions to global food production. Environ. Res. Lett. 11(12), 1–12 (2016). http://iopscience.iop.org/article/10.1088/1748-9326/11/12/124010/meta

    Article  Google Scholar 

  9. De Janvry, A., Sadoulet, E., Suri, T.: Field experiments in developing country agriculture. In: Handbook of Economic Field Experiments, vol. 2, pp. 427–466. Elsevier, Amsterdam (2017)

    Google Scholar 

  10. Leeuwis, C.: Communication for Rural Innovation: Rethinking Agricultural Extension. Wiley, Hoboken (2013)

    Google Scholar 

  11. Cock, J., et al.: Crop management based on field observations: case studies in sugarcane and coffee. Agric. Syst. 104(9), 755–769 (2011)

    Article  Google Scholar 

  12. Jiménez, D., et al.: From observation to information: data-driven understanding of on farm yield variation. PLoS One 11(3), 1–20 (2016)

    Google Scholar 

  13. Jiménez, D., et al.: Interpretation of commercial production information: a case study of lulo (Solanum quitoense), an under-researched Andean fruit. Agric. Syst. 104(3), 258–270 (2011)

    Article  Google Scholar 

  14. Jiménez, D., et al.: Analysis of Andean blackberry (Rubus glaucus) production models obtained by means of artificial neural networks exploiting information collected by small-scale growers in Colombia and publicly available meteorological data. Comput. Electron. Agric. 69(2), 198–208 (2009)

    Article  Google Scholar 

  15. Delerce, S., et al.: Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE 11(8), e0161620 (2016)

    Article  Google Scholar 

  16. Strobl, C., Boulesteix, A., Kneib, T., Augustin, T., Zeileis, A.: Conditional variable importance for random forests. BMC Bioinform. 11, 1–11 (2008)

    Google Scholar 

  17. Yu, T., Davis, L., Baydar, C., Roy, R.: Evolutionary Computation in Practice. Studies in Computational Intelligence. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75771-9

    Book  MATH  Google Scholar 

  18. Ashlock, D.: Evolutionary Computation for Modeling and Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/0-387-31909-3

    Book  MATH  Google Scholar 

  19. Yu, X., Gen, M.: Introduction to Evolutionary Algorithms. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-84996-129-5

    Book  MATH  Google Scholar 

  20. Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 93–117. Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4614-6940-7_4

    Chapter  Google Scholar 

  21. Du, K.-L., Swamy, M.N.S.: Particle swarm optimization. In: Search and Optimization by Metaheuristics, pp. 153–173. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-41192-7

    Book  Google Scholar 

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  23. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  24. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Omran, M.G., Mahdavi, M.: Global-best harmony search. Appl. Math. Comput. 198(2), 643–656 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  27. Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O., et al.: Neural Network Design, vol. 20. Pws Pub, Boston (1996)

    Google Scholar 

  28. Breiman, L.: Statistical modeling: the two cultures. Stat. Sci. 16, 199–215 (2001)

    Article  MathSciNet  Google Scholar 

  29. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006)

    Article  MathSciNet  Google Scholar 

  30. Strobl, C., Boulesteix, A.-L., Zeileis, A., Hothorn, T.: Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 8, 25 (2007)

    Article  Google Scholar 

  31. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  32. Al-Jarrah, O.Y., Yoo, P.D., Muhaidatc, S., Karagiannidis, G.K., Tahaa, K.: Efficient machine learning for Big Data: a review. Big Data Res. 2(3), 87–93 (2015)

    Article  Google Scholar 

  33. Gao, K.-Z., Suganthan, P.N., Pan, Q.-K., Chua, T.J., Cai, T.X., Chong, C.-S.: Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives. J. Intell. Manuf. 27(2), 363–374 (2016)

    Article  Google Scholar 

  34. Kong, X., Gao, L., Ouyang, H., Li, S.: A simplified binary harmony search algorithm for large scale 0–1 knapsack problems. Expert Syst. Appl. 42(12), 5337–5355 (2015)

    Article  Google Scholar 

  35. Hoang, D.C., Yadav, P., Kumar, R., Panda, S.K.: Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Trans. Ind. Inform. 10(1), 774–783 (2014)

    Article  Google Scholar 

  36. Assad, A., Deep, K.: Applications of harmony search algorithm in data mining: a survey. In: Pant, M., Deep, K., Bansal, J., Nagar, A., Das, K. (eds.) Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol. 437, pp. 863–874. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0451-3_77

    Chapter  Google Scholar 

  37. Kuhn, M., et al.: Caret: Classification and Regression Training (2014)

    Google Scholar 

Download references

Acknowledgements

The research has been supported by International Center for Tropical Agriculture (CIAT) and is based on data shared by the MASAGRO project lead by the International Maize and Wheat Improvement Center (CIMMYT), we also acknowledge for the open data shared by INIFAP and INEGI. We are especially grateful to Colin McLachlan for suggestions relating to the text in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cobos .

Editor information

Editors and Affiliations

Appendix

Appendix

Appendix 1. Dataset description

Reference

Description

Classification

Scale

M1

Total amount of nitrogen applied

Practices

Continuous

M2

Total amount of phosphorus applied

Practices

Continuous

M3

Total amount of potassium applied

Practices

Continues

M4

Number of mechanical weeding

Practices

Discrete

M5

Number of post-harvest herbicides applications

Practices

Discrete

M6

Number of “rastreo”

Practices

Discrete

M7

Number of pre-sowing herbicides applications

Practices

Discrete

M8

Number of fertilizations

Practices

Discrete

M9

Number of applications of foliar fertilizers

Practices

Discrete

M10

Number of applications of biofertilizants

Practices

Discrete

M11

Number of post-sowing herbicides applications

Practices

Discrete

M12

Number of applications of insecticides

Practices

Discrete

M13

Cultivars’ group criollo

Practices

Discrete

M14

Cultivars’ group Dekalb

Practices

Discrete

M15

Cultivars’ group others

Practices

Discrete

M16

Cultivars’ group P4082 W

Practices

Discrete

M17

No seed treatment

Practices

Discrete

M18

Seed treatment

Practices

Discrete

M19

Conservation agriculture

Practices

Discrete

M20

Zero or minimum tillage

Practices

Discrete

M21

Conventional tillage

Practices

Discrete

S1

Clay content

Soil

Continuous

S2

Silt content

Soil

Continuous

S3

Soil organic content

Soil

Continuous

S4

Cationic exchange capacity

Soil

Continuous

S5

Basis saturation

Soil

Continuous

S6

Low infiltration

Soil

Discrete

S7

Moderate infiltration

Soil

Discrete

S8

Good infiltration

Soil

Discrete

W1

Average minimum temperature

Weather

Continuous

W2

Average diurnal range

Weather

Continuous

W3

Accumulated solar energy

Weather

Continuous

W4

Frequency of days with maximum temperature above 34°C

Weather

Continuous

W5

Accumulated precipitation

Weather

Continuous

W6

Frequency of days with minimum temperature below 8°C

Weather

Continuous

W7

Average relative humidity

Weather

Continuous

W8

Standard deviation of the relative humidity

Weather

Continuous

Y

Yield

Yield

Continuous

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dorado, H., Delerce, S., Jimenez, D., Cobos, C. (2018). Finding Optimal Farming Practices to Increase Crop Yield Through Global-Best Harmony Search and Predictive Models, a Data-Driven Approach. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Computational Intelligence. MICAI 2018. Lecture Notes in Computer Science(), vol 11289. Springer, Cham. https://doi.org/10.1007/978-3-030-04497-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04497-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04496-1

  • Online ISBN: 978-3-030-04497-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics