Reactions in Drift Tubes

  • Larry A. ViehlandEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 105)


Ion–molecule reactions are an important part of chemistry, but their study covers such a wide range of things that a book the size of this one can only describe a small fraction of this research field. We focus on the range of kinetic energy from about 0.1 to 2 eV, equivalent to thermal energies from 1000 to 20,000 K. This range can best be studied by using a drift tube, either as a stand-alone device or in combination with a mass spectrometer and/or a flowing afterglow apparatus. The history of flowing afterglow experiments has been reviewed several times (Graul and Squires in Mass Spectrom. Rev. 7:263, 1988, Bohme, Int. J. Mass Spectrom. 200:97 2000, Bierbaum, Int. J. Mass Spectrom. 377:456, 2015) and will not be repeated here.


  1. D.L. Albritton, I. Dotan, W. Lindinger, M. McFarland, J. Tellinghuisen, F.C. Fehsenfeld, J. Chem. Phys. 66, 410 (1977)ADSCrossRefGoogle Scholar
  2. V.M. Bierbaum, Int. J. Mass Spectrom. 377, 456 (2015)CrossRefGoogle Scholar
  3. D.K. Bohme, Int. J. Mass Spectrom. 200, 97 (2000)CrossRefGoogle Scholar
  4. J.D. Burley, K.M. Ervin, P.B. Armentrout, J. Chem. Phys. 86, 1944 (1987)ADSCrossRefGoogle Scholar
  5. M.J. Copsey, D. Smith, J. Sayers, Planet. Space Sci. 14, 1047 (1966)ADSCrossRefGoogle Scholar
  6. D.M. Danailov, R. Brothers, L.A. Viehland, R. Johnsen, T.G. Wright, E.P.F. Lee, J. Chem. Phys. 125, 084309 (2006)ADSCrossRefGoogle Scholar
  7. D.M. Danailov, L.A. Viehland, R. Johnsen, T.G. Wright, A.S. Dickenson, J. Chem. Phys. 128, 134302 (2008)ADSCrossRefGoogle Scholar
  8. F.C. Fehsenfeld, A.L. Schmeltekopf, E.E. Ferguson, Planet. Space Sci. 13, 219 (1965)ADSCrossRefGoogle Scholar
  9. S.T. Graul, R.R. Squires, Mass Spectrom. Rev. 7, 263 (1988)ADSCrossRefGoogle Scholar
  10. D.G. Hopper, J. Chem. Phys. 77, 314 (1982)ADSCrossRefGoogle Scholar
  11. S.L. Lin, J.N. Bardsley, J. Chem. Phys. 66, 435 (1977)ADSCrossRefGoogle Scholar
  12. L.C. Pitchford, L.L. Alves, K. Bartschat, S.F. Biagi, M.C. Bordage, I. Bray, C.E. Brion, M.J. Brunger, L. Campbell, A. Chachereau, B. Chaudhury, L.G. Christophorou, E. Carbone, N.A. Dyatko, C.M. Franck, D.V. Fursa, R.K. Gangwar, V. Guerra, P. Haefliger, G.J.M. Hagelaar, A. Hoesl, Y. Itikawa, I.V. Kochetov, R.P. McEachran, W.L. Morgan, A.P. Napartovich, V. Puech, M. Rabie, L. Sharma, R. Srivastava, A.D. Stauffer, J. Tennyson, J. de Urquijo, J. van Dijk, L.A. Viehland, M.C. Zammit, O. Zatsarinny, S. Pancheshnyi, Plasma Proc. Polym. 14, 1600098 (2017)CrossRefGoogle Scholar
  13. A.L. Schmeltekopf, F.C. Ferguson, G.I. Gilman, E.E. Ferguson, Planet. Space Sci. 15, 401 (1967)ADSCrossRefGoogle Scholar
  14. L. A. Viehland database at (2017)
  15. L.A. Viehland, E.A. Mason, J. Chem. Phys. 66, 422 (1977)ADSCrossRefGoogle Scholar
  16. L.A. Viehland, E.A. Mason, Ann. Phys. (N.Y.) 110, 287 (1978)ADSCrossRefGoogle Scholar
  17. L.A. Viehland, R. Johnsen, J. Chem. Phys. 149, 074311 (2018)ADSCrossRefGoogle Scholar
  18. G.H. Wannier, Bell Syst. Tech. J. 32, 170 (1953)CrossRefGoogle Scholar
  19. P. Warneck, Planet. Space Sci. 15, 1349 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Science DepartmentChatham UniversityPittsburghUSA

Personalised recommendations