Ab Initio Calculations of Transport Coefficients

  • Larry A. ViehlandEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 105)


There are two main philosophies behind theoretical calculations. The one illustrated in Chap.  9 is to use models of physical phenomenon, specifically mathematical models, that can be solved exactly, either analytically or by numerical methods. Such models often involve adjustable parameters whose values are fit by comparing model results to experimental values; once the parameters are determined, the models are then used to make similar calculations for other situations, ones that were not part of the set used to determine the parameters. The philosophy illustrated in this chapter is to start from our best theories and, as necessary, make approximations to reduce the equations to forms that are practical to solve, again either analytically or numerically. The hope is that, with time, the approximations will improve such that the calculated values match experimental results without using adjustable parameters.


  1. M.J. Bastian, C.P. Lauenstein, V.M. Bierbaum, S.R. Leone, J. Chem. Phys. 98, 9496 (1993)ADSCrossRefGoogle Scholar
  2. E. Besalú, R. Carbó-Dorca, J. Math. Chem. 49, 1769 (2011)MathSciNetCrossRefGoogle Scholar
  3. H. Bethe, E. Salpeter, Phys. Rev. 84, 1232 (1951)ADSCrossRefGoogle Scholar
  4. J. Boschmans, S. Jacobs, J.P. Willisma, M. Palmer, K. Richardson, K. Giles, C. Lapthorn, W.A. Herrebout, F. Lemiere, F. Sobott, Analyst 141, 4044 (2016)ADSCrossRefGoogle Scholar
  5. A.A. Buchachenko, J. Klos, M.M. Szczesniak, G. Chalsinski, B.R. Gray, T.G. Wright, E.L. Wood, L.A. Viehland, E. Qing, J. Chem. Phys. 125, 064305 (2006)ADSCrossRefGoogle Scholar
  6. A.A. Buchachenko, L.A. Viehland, J. Chem. Phys. 140, 114309 (2014)ADSCrossRefGoogle Scholar
  7. A.A. Buchachenko, L.A. Viehland, J. Chem. Phys. 148, 154304 (2018)ADSCrossRefGoogle Scholar
  8. A. Carrington, C.A. Leach, A.J. Marr, A.M. Shaw, M.R. Viant, J.M. Hutson, M.M. Law, J. Chem. Phys. 102, 2379 (1995)ADSCrossRefGoogle Scholar
  9. A. Dalgarno, Phil. Trans. Roy. Soc. A 250, 426 (1958)ADSCrossRefGoogle Scholar
  10. D.M. Danailov, L.A. Viehland, R. Johnsen, T.G. Wright, A.S. Dickenson, J. Chem. Phys. 128, 134302 (2008)ADSCrossRefGoogle Scholar
  11. R.A. Dressler, J.P.M. Beijers, H. Meyer, S.M. Penn, V.M. Bierbaum, S.R. Leone, J. Chem. Phys. 89, 4707 (1988)ADSCrossRefGoogle Scholar
  12. K.G. Dyall, K. Fægri Jr, Introduction to Relativistic Quantum Chemistry (Oxford University Press, Oxford, 2007)Google Scholar
  13. G. Heiche, E.A. Mason, J. Chem. Phys. 53, 4687 (1970)ADSCrossRefGoogle Scholar
  14. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, A.K. Wilson, Chem. Phys. Lett. 286, 243 (1998)ADSCrossRefGoogle Scholar
  15. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, A.K. Wilson, Chem. Phys. Lett. 302, 437 (1999)ADSCrossRefGoogle Scholar
  16. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964)Google Scholar
  17. F.B. Holleman, W.M. Pope, F.L. Eisele, J.R. Twist, G.W. Neeley, M.G. Thackston, R.D. Chelf, E.W. McDaniel, J. Chem. Phys. 76, 2106 (1982)ADSCrossRefGoogle Scholar
  18. T. Holstein, J. Phys. Chem. 56, 832 (1952)CrossRefGoogle Scholar
  19. J.J. Hurly, W.L. Taylor, F.R. Meeks, J. Chem. Phys. 96, 3775 (1992)ADSCrossRefGoogle Scholar
  20. M. Jacoby: Chem. Eng. News, Jan. 9, 2017, p. 5Google Scholar
  21. A. Kahros, B.J. Schwartz, J. Chem. Phys. 138, 054110 (2013)ADSCrossRefGoogle Scholar
  22. T. Kato, Commun. Pure Appl. Math. 10, 151 (1957)CrossRefGoogle Scholar
  23. D.A. Konovalov, D.G. Cocks, R.D. White, Euro. Phys. J. D 71, 258 (2017)ADSCrossRefGoogle Scholar
  24. M. Laatiaoui, H. Backe, D. Habe, P. Kunz, W. Lauth, M. Sewtz, Eur. Phys. J. D 66, 232 (2012)ADSCrossRefGoogle Scholar
  25. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, Oxford, 1965)Google Scholar
  26. E. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics (Kluwer Academic Publishers, Boston, 2003)Google Scholar
  27. I.S. Lim, P. Schwerdfeger, Phys. Rev. A 70, 062501 (2004)ADSCrossRefGoogle Scholar
  28. I.S. Lim, H. Stoll, P. Schwerdfeger, J. Chem. Phys. 124, 034107 (2006)ADSCrossRefGoogle Scholar
  29. LXCat database, Accessed Aug 2018 (2018)
  30. M.J. Manard, P.R. Kemper, Int. J. Mass Spectrom. 412, 14 (2017)CrossRefGoogle Scholar
  31. E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988)CrossRefGoogle Scholar
  32. E.W. McDaniel, L.A. Viehland, Phys. Rep. 110, 333 (1984)ADSCrossRefGoogle Scholar
  33. M.F. McGuirk, L.A. Viehland, E.P.F. Lee, W.H. Breckenridge, C.D. Withers, A.M. Gardner, R.J. Plowright, T.G. Wright, J. Chem. Phys. 130, 194305 (2009)ADSCrossRefGoogle Scholar
  34. M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, K.A. Lyssenko, Science 355, 49 (2017)ADSCrossRefGoogle Scholar
  35. F.R. Meeks, T.J. Cleland, K.E. Hutchinson, W.L. Taylor, J. Chem. Phys. 100, 3813 (1994); errarata, J. Chem. Phys. 103, 1239 (1995)Google Scholar
  36. T. Miller, B. Bederson, Adv. At. Mol. Phys. 25, 37 (1989)ADSCrossRefGoogle Scholar
  37. B. Nagy, F. Jensen, in Basis Sets in Quantum Chemistry, in Reviews in Computational chemistry Vol. 30, ed by A. L. Parrill, K. B. Lipkowitz (Wiley, New York, 2017)Google Scholar
  38. P.D. Neufeld, R.A. Aziz, Comput. Phys. Commun. 3, 269 (1972)ADSCrossRefGoogle Scholar
  39. A. Nicklass, K.A. Peterson, A. Berning, H.-J. Werner, P.J. Knowles, J. Chem. Phys. 112, 5624 (2000)ADSCrossRefGoogle Scholar
  40. H. O’Hara, F.J. Smith, J. Comput. Phys. 5, 328 (1970)ADSCrossRefGoogle Scholar
  41. P.P. Ong, M.J. Hogan, K.Y. Lam, L.A. Viehland, Phys. Rev. A 45, 3997 (1992)ADSCrossRefGoogle Scholar
  42. S.M. Penn, J.P.M. Beijers, R.A. Dressler, V.M. Bierbaum, S.R. Leone, J. Chem. Phys. 93, 5118 (1990)ADSCrossRefGoogle Scholar
  43. K.A. Peterson, Accessed Aug 2018 (2018a)
  44. K.A. Peterson, Accessed Aug 2018 (2018b)
  45. F.L. Pilar, Elementary Quantum Chemistry (McGraw Hill, New York, 1968)Google Scholar
  46. J.C. Rainwater, P.M. Holland, L. Biolsi, J. Chem. Phys. 77, 434 (1982)ADSCrossRefGoogle Scholar
  47. G. Rasskazov, M. Nairat, I. Magoulas, V.V. Lozovoy, P. Piecuch, M. Dantus, Chem. Phys. Lett. 683, 121 (2017)ADSCrossRefGoogle Scholar
  48. S. Sinha, S.L. Lin, J.N. Bardsley, J. Phys. B 12, 1613 (1979)ADSCrossRefGoogle Scholar
  49. F.J. Smith, R.J. Munn, J. Chem. Phys. 41, 3560 (1964)ADSCrossRefGoogle Scholar
  50. P. Soldan, E.F.P. Lee, T.G. Wright, Phys. Chem. Chem. Phys. 21, 4661 (2001)CrossRefGoogle Scholar
  51. L. Szasz, Pseudopotential Theory of Atoms and Molecules (Wiley, New York, 1985)Google Scholar
  52. W.-C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 136, 104309 (2012)ADSCrossRefGoogle Scholar
  53. W.D. Tuttle, R.L. Thorington, L.A. Viehland, T.G. Wright, Mol. Phys. 113, 3767 (2015)ADSCrossRefGoogle Scholar
  54. W.D. Tuttle, R.L. Thorington, L.A. Viehland, W.H. Breckenridge, T. G. Wright, Phil. Trans. Roy., Soc. A 376, 20170156 (2017)Google Scholar
  55. W.D. Tuttle, J.P. Harris, Y. Zheng, W.H. Breckenridge, T.G. Wright, J. Phys. Chem. A 122, 7679 (2018)ADSCrossRefGoogle Scholar
  56. L.A. Viehland, Chem. Phys. 70, 149 (1982)Google Scholar
  57. L.A. Viehland, Chem. Phys. 85, 291 (1984)CrossRefGoogle Scholar
  58. L.A. Viehland, Y. Chang, Comp. Phys. Commun. 181, 1687 (2010)ADSCrossRefGoogle Scholar
  59. L.A. Viehland, D.S. Hampt, J. Chem. Phys. 97, 4964 (1992)ADSCrossRefGoogle Scholar
  60. L.A. Viehland, J.J. Hurly, J. Chem. Phys. 105, 11143 (1996)ADSCrossRefGoogle Scholar
  61. L.A. Viehland, C.-L. Yang, Mol. Phys. 113, 3874 (2015)ADSCrossRefGoogle Scholar
  62. L.A. Viehland, R. Johnsen, B.R. Gray, T.G. Wright, J. Chem. Phys. 144, 074306 (2016)ADSCrossRefGoogle Scholar
  63. L.A. Viehland, T. Skaist, C. Adhikari, W.F. Siems, Int. J. Ion Mobil. Spec. 20, 1 (2017)CrossRefGoogle Scholar
  64. H. Wei, R.J. Le Roy, Mol. Phys. 104, 147 (2006)ADSCrossRefGoogle Scholar
  65. H.T. Wood, J. Chem. Phys. 54, 977 (1971)ADSCrossRefGoogle Scholar
  66. J. Xie, B. Poirier, G.I. Gellene, J. Chem. Phys. 122, 184310 (2005)ADSCrossRefGoogle Scholar
  67. A. Yousef, S. Shrestha, L.A. Viehland, E.P.F. Lee, B.R. Gray, V.L. Ayles, T.G. Wright, W.H. Breckenridge, J. Chem. Phys. 127, 154309 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Science DepartmentChatham UniversityPittsburghUSA

Personalised recommendations