Experimental Techniques

  • Larry A. ViehlandEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 105)


This chapter will discuss experimental techniques that have used drift tubes to study ion motion in gases, but primarily from the viewpoint of what implications the theories discussed in Chap.  1 (and later in this book) have for the experiments. This means, in particular, that little or no attention will be given to applications, particular instrumental problems and advancements, or similar things.


  1. E.B. Anthony, M.J. Bastian, V.M. Bierbaum, S.R. Leone, J. Chem. Phys. 112, 10269 (2000)ADSGoogle Scholar
  2. G.R. Asbury, H.H. Hill Jr., J. Microcolumn Sep. 12, 172 (2000)Google Scholar
  3. W.A. Barnes, D.W. Martin, E.W. McDaniel, Phys. Rev. Lett. 6, 110 (1961)ADSGoogle Scholar
  4. P. Benigni, F. Fernandez-Lima, Anal. Chem. 88, 7404 (2016)Google Scholar
  5. Z. Berant, Z. Karpas, J. Am. Chem. Soc. 111, 3819 (1989)Google Scholar
  6. Z. Berant, Z. Karpas, O. Shahal, J. Phys. Chem. 93, 7529 (1989)Google Scholar
  7. C. Bleiholder, Int. J. Mass Spectrom. 399–400, 1 (2016)Google Scholar
  8. C. Bleiholder, N.R. Johnson, S. Contreras, T. Wyttenbach, M.T. Bowers, Anal. Chem. 87, 7196 (2015)Google Scholar
  9. B.K. Bluhm, K.J. Gillig, D.H. Russell, Rev. Sci. Instrum. 11, 4078 (2000)ADSGoogle Scholar
  10. B.C. Bohrer, S.I. Merenbloom, S.L. Koeniger, A.E. Hilderbrand, D.E. Clemmer, Annu. Rev. Anal. Chem. 1, 10.1 (2008)Google Scholar
  11. H. Bohringer, D.W. Fahey, W. Lindinger, F. Howorka, F.C. Fehsenfeld, D.L. Albritton, Int. J. Mass Spectrom. Ion Proc. 81, 45 (1987)ADSGoogle Scholar
  12. G.L. Braglia, L. Romanò, M. Diligenti, Il Nuovo Cim. B 85, 193 (1985)ADSGoogle Scholar
  13. A.A. Buchachenko, L.A. Viehland, J. Chem. Phys. 140, 114309 (2014)ADSGoogle Scholar
  14. A.A. Buchachenko, L.A. Viehland, J. Chem. Phys. 148, 154304 (2018a)ADSGoogle Scholar
  15. A.A. Buchachenko, L.A. Viehland, unpublished (2018b)Google Scholar
  16. I.A. Buryakov, E.V. Krylov, E.G. Nazarov, U, K., Rasulev, Int. J. Mass Spectrom. Ion Proc. 128, 143 (1993)Google Scholar
  17. J.M. Campbell, B.A. Collings, D.J. Douglas, Rapid Commun. Mass Spectrom. 12, 1463 (1998)ADSGoogle Scholar
  18. D. Canzani, K.J. Laszlo, M.F. Bush, J. Phys. Chem. A 122, 5625 (2018)Google Scholar
  19. B.L. Carnahan, A.S. Tarrasov, U. S. Patent No. 5420424 (1995)Google Scholar
  20. R.A. Cassidy, M.T. Elford, Aust. J. Phys. 38, 587 (1985)ADSGoogle Scholar
  21. R.V. Chiflikian, Phys. Plasmas 2, 3902 (1995); Errata in Phys. Plasmas 3, 1477 (1996)Google Scholar
  22. R.V. Chiflikian, Phys. Plasmas 4, 551 (1997)Google Scholar
  23. R.V. Chiflikian, Phys. Plasmas 6, 4794 (1999)ADSGoogle Scholar
  24. M.J. Cohen, F.W. Karasek, J. Chromatogr. Sci. 8, 330 (1970)Google Scholar
  25. M.B. Comisarow, A.G. Marshall, J. Chem. Phys. 64, 110 (1976)ADSGoogle Scholar
  26. C.L. Crawford, B.C. Hauck, J.A. Tufariello, C.S. Harden, V. McHugh, W.F. Siems, H.H. Hill Jr., Talanta 101, 161 (2012)Google Scholar
  27. C.L. Crawford, H.H. Hill Jr., Anal. Chim. Acta 795, 36 (2013)Google Scholar
  28. R.A. Dressler, H. Meyer, A.O. Langford, V.M. Bierbaum, S.R. Leone, J. Chem. Phys. 87, 5578 (1987a)ADSGoogle Scholar
  29. R.A. Dressler, H. Meyer, S.R. Leone, J. Chem. Phys. 87, 6029 (1987b)ADSGoogle Scholar
  30. R.R. Ph Dugourd, D.E. Hudgins, M.F. Jarrold Clemmer, Rev. Sci. Instrum. 68, 1122 (1997)ADSGoogle Scholar
  31. D. Edelson, K.B. McAfee, Rev. Sci. Instrum. 35, 1887 (1964)Google Scholar
  32. G.A. Eiceman, Z. Karpas, H.H. Hill Jr., Ion Mobility Spectrometry, 3rd edn. (CRC Press, Boca Raton, 2014)Google Scholar
  33. H.W. Ellis, R.Y. Pai, E.W. McDaniel, E.A. Mason, L.A. Viehland, At. Data Nucl. Data Tables 17, 177 (1976)ADSGoogle Scholar
  34. H.W. Ellis, E.W. McDaniel, D.L. Albritton, L.A. Viehland, S.L. Lin, E.A. Mason, At. Data Nucl. Data Tables 22, 179 (1978)ADSGoogle Scholar
  35. H.W. Ellis, M.G. Thackston, E.W. McDaniel, E.A. Mason, At. Data Nucl. Data Tables 31, 113 (1984)ADSGoogle Scholar
  36. F. Fernandez-Lima, Int. J. Ion Mobil. Spectrom. 19, 65 (2016)Google Scholar
  37. F. Fernandez-Lima, D.A. Kaplan, M.A. Park, Rev. Sci. Instrum. 82, 126106 (2011)ADSGoogle Scholar
  38. R. Fernandez-Maestre, Int. J. Mass. Spectrom. 421, 8 (2017)Google Scholar
  39. R. Fernandez-Maestre, J. Mass Spectrom. 53, 1 (2018)ADSGoogle Scholar
  40. H.A. Fhadil, D. Mathur, J.B. Hasted, J. Phys. B 15, 1443 (1982)ADSGoogle Scholar
  41. J.G. Forsythe, A.S. Petrov, C.A. Walker, S.J. Allen, J.S. Pellissier, M.F. Bush, N.V. Hud, F.M. Fernandez, Analyst 140, 6853 (2015)ADSGoogle Scholar
  42. L.S. Frost, A.V. Phelps, Phys. Rev. 127, 1621 (1962)ADSGoogle Scholar
  43. I.R. Gatland, W.F. Morrison, H.W. Ellis, M.G. Thackston, E.W. McDaniel, M.H. Alexander, L.A. Viehland, E.A. Mason, J. Chem. Phys. 66, 5121 (1977)ADSGoogle Scholar
  44. K. Giles, S.D. Pringle, K.R. Worthington, D. Little, J.L. Wildgoose, R.H. Bateman, Rapid Commun. Mass Spectrom. 18, 2401 (2004)ADSGoogle Scholar
  45. K. Giles, J.L. Wildgoose, D.J. Langridge, I. Campuzano, Int. J. Mass Spectrom. 298, 10 (2010)Google Scholar
  46. D.E. Goeringer, L.A. Viehland, J. Phys. B 38, 4027 (2005)ADSGoogle Scholar
  47. M.P. Gorshkov, USSR Inventors certificate 966583 (1982)Google Scholar
  48. G.W. Griffin, I. Dzidic, D.I. Carroll, R.N. Stillwell, E.C. Horning, Anal. Chem. 45, 1204 (1973)Google Scholar
  49. R. Guevremont, private communications with L. A. Viehland (1999)Google Scholar
  50. R. Guevremont, J. Chromatogr. 1058, 3 (2004)Google Scholar
  51. R. Guevremont, R.W. Purves, Rev. Sci. Instrum. 70, 1370 (1999)ADSGoogle Scholar
  52. R. Guevremont, D.A. Barnett, R.W. Purves, L.A. Viehland, J. Chem. Phys. 114, 10270 (2001)ADSGoogle Scholar
  53. P.W. Harland, B.J. McIntosh, R.W. Simpson, N.R. Thomas, J. Chem. Soc. Faraday Trans. 2, 2039 (1986)Google Scholar
  54. B.C. Hauck, W.F. Siems, C.S. Harden, V.M. McHugh, Anal. Chem. 90, 4578 (2018)Google Scholar
  55. J. Heimerl, R. Johnsen, M.A. Biondi, J. Chem. Phys. 51, 5041 (1969)ADSGoogle Scholar
  56. D.R. Hernandez, J.D. DeBord, M.E. Ridgeway, D.A. Kaplan, M.A. Park, F. Fernandez-Lima, Analyst 139, 1913 (2014)ADSGoogle Scholar
  57. J.L. Hernández-Ávila, E. Basurto, J. de Urquijo, J. Phys. D 37, 3088 (2004)ADSGoogle Scholar
  58. H.H. Hill Jr., W.F. Siems, R.H. St, Louis, D.G. McMinn, Anal. Chem. 62, 1201A (1990)Google Scholar
  59. H.H. Hill Jr., P. Dwivedi, A.B. Kanu, Bull. Laser Spectrosc. Soc. India 14, 92 (2006)Google Scholar
  60. M.J. Hogan, P.P. Ong, Int. J. Mass Spectrom. Ion Process. 65, 119 (1985)ADSGoogle Scholar
  61. M.J. Hogan, P.P. Ong, J. Phys. D 19, 2123 (1986)ADSGoogle Scholar
  62. K. Iinuma, Can. J. Chem. 69, 1090 (1991)Google Scholar
  63. K. Iinuma, E.A. Mason, L.A. Viehland, Mol. Phys. 61, 1131 (1987)ADSGoogle Scholar
  64. K. Iinuma, T. Hamano, M. Takebe, J. Chem. Phys. 101, 2949 (1994)ADSGoogle Scholar
  65. K. Iinuma, N. Sasaki, M. Takebe, J. Chem. Phys. 99, 6907 (1993)ADSGoogle Scholar
  66. M.F. Jarrold, J. Phys. Chem. 99, 11 (1995)Google Scholar
  67. R. Johnsen, M.A. Biondi, J. Chem. Phys. 57, 1975 (1972)ADSGoogle Scholar
  68. J.V. Jovanović, S.B. Vrhovac, Z.Lj. Petrović, Eur. Phys. J. D 28, 91 (2004)Google Scholar
  69. R.K. Julian Jr., H.-P. Reiser, R.G. Cooks, Int. J. Mass Spectrom. Ion Proc. 123, 85 (1993)ADSGoogle Scholar
  70. A.B. Kanu, M.M. Gribb, H.H. Hill Jr., Anal. Chem. 80, 6610 (2008)Google Scholar
  71. F.W. Karasek, S.H. Kim, S. Rokushika, Anal. Chem. 50, 2013 (1978)Google Scholar
  72. Z. Karpas, Anal. Chem. 61, 684 (1989)Google Scholar
  73. Z. Karpas, Z. Berant, J. Phys. Chem. 93, 3021 (1989)Google Scholar
  74. Z. Karpas, M.J. Cohen, R.M. Stimac, R.F. Wenlund, Int. J. Mass Spectrom. Ion Proc. 74, 153 (1986)ADSGoogle Scholar
  75. Z. Karpas, R.M. Stimac, Z. Rappoport, Int. J. Mass Spectrom. Ion Proc. 83, 163 (1988)ADSGoogle Scholar
  76. D.J. Kenny, K.R. Worthington, J.B. Hoyes, J. Am. Soc. Mass Spectrom. 21, 1061 (2010)Google Scholar
  77. M.H. Khatri, J. Phys. D 17, 273 (1984)ADSGoogle Scholar
  78. M.H. Khatri, J. Phys. D 18, 395 (1985)ADSGoogle Scholar
  79. T. Kihara, Adv. Chem. Phys. 5, 147 (1963)Google Scholar
  80. R.G. Kosmider, J.B. Hasted, J. Phys. B 8, 273 (1975)ADSGoogle Scholar
  81. E.V. Krylov, Tech. Phys. 44, 113 (1999)Google Scholar
  82. K. Kumar, J. Phys. D: Appl. Phys. 14, 2199 (1981)ADSGoogle Scholar
  83. K. Kumar, Phys. Rep. 112, 319 (1984)Google Scholar
  84. M. Laatiaoui, H. Backe, D. Habs, P. Kunz, W. Lauth, M. Sewtz, Eur. Phys. J. D 66, 232 (2012)ADSGoogle Scholar
  85. C.P. Lauenstein, M.J. Bastian, V.M. Bierbaum, J. Chem. Phys. 94, 7810 (1991)ADSGoogle Scholar
  86. S.N. Lin, G.W. Griffin, E.C. Horning, W.E. Wentworth, J. Chem. Phys. 60, 4994 (1974)ADSGoogle Scholar
  87. S.N. Lin, L.A. Viehland, E.A. Mason, J.H. Whealton, J.N. Bardsley, J. Phys. B 10, 3567 (1977)ADSGoogle Scholar
  88. T.H. Lovass, H.R. Skullerud, D.-H. Kristiensen, D. Linhjell, J. Phys. D. 20, 1465 (1987)Google Scholar
  89. D.M. Lubman, Anal. Chem. 56, 1298 (1984)Google Scholar
  90. J. Lucas, Int. J. Electron. 27, 201 (1969)Google Scholar
  91. T. Makabe, H. Shinada, J. Phys. D 18, 2385 (1985)ADSGoogle Scholar
  92. M.J. Manard, P.R. Kemper, Int. J. Mass Spectrom. 412, 14 (2017)Google Scholar
  93. R.E. March, J.F.J. Todd, Fundamentals of Ion Trap Mass Spectrometry. Volume 1. Florida, Practical Aspects of Ion Trap Mass Spectrometry (CRC, Boca Raton, 1995)Google Scholar
  94. A.G. Marshall, T. Chen, Int. J. Mass Spectrom. 377, 410 (2015)Google Scholar
  95. E.A. Mason, Ion mobility: its role in plasma chromatography, in Plasma Chromatography, ed. by T.W. Carr ((Plenum, New York, 1984)Google Scholar
  96. E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988)Google Scholar
  97. E.A. Mason, H. Hahn, Phys. Rev. A 5, 438 (1972)ADSGoogle Scholar
  98. K.B. McAfee, D. Edelson, Proc. Phys. Soc. Lond. 81, 382 (1963)ADSGoogle Scholar
  99. E.W. McDaniel, D.W. Martin, W.S. Barnes, Rev. Sci. Instrum. 33, 2 (1962)ADSGoogle Scholar
  100. L.G. McKnight, K.B. McAfee, D.P. Sipler, Phys. Rev. 164, 62 (1967)ADSGoogle Scholar
  101. R.M. Melaven, E. Mack Jr., J. Am. Chem. Soc. 54, 888 (1932)Google Scholar
  102. S.I. Merenbloom, R.S. Glaskin, Z.B. Henson, D.E. Clemmer, Anal. Chem. 81, 1482 (2009)Google Scholar
  103. S.I. Merenbloom, T.G. Flick, E.R. William, J. Am. Soc. Mass Spectrom. 23, 553 (2012)ADSGoogle Scholar
  104. M.F. Mesleh, J.M. Hunter, A.A. Shvartsburg, G.C. Schatz, M.F. Jarrold, J. Phys. Chem. 100, 16082 (1996)Google Scholar
  105. H. Meyer, S.R. Leone, Mol. Phys. 63, 705 (1988)ADSGoogle Scholar
  106. H.B. Milloy, R.E. Robson, J. Phys. B 6, 1139 (1973)ADSGoogle Scholar
  107. D. Morsa, V. Gabelica, E. De Pauw, Anal. Chem. 83, 5775 (2011)Google Scholar
  108. J.L. Moruzzi, L. Harrison, Int. J. Mass Spectrom. Ion Phys. 13, 163 (1974)ADSGoogle Scholar
  109. J.T. Moseley, I.R. Gatland, D.W. Martin, E.W. McDaniel, Phys. Rev. 178, 234 (1969)ADSGoogle Scholar
  110. K. Naveed-Ullah, D. Mathur, J.B. Hasted, Int. J. Mass Spectrom. Ion Phys. 26, 91 (1978)ADSGoogle Scholar
  111. K.F. Ness, L. A. Viehland, 148, 255 (1990)Google Scholar
  112. P.P. Ong, M.J. Hogan, J. Phys. B 18, 1897 (1985)ADSGoogle Scholar
  113. P.P. Ong, D. Mathur, M.H. Khatri, J.B. Hasted, M. Hamdan, J. Phys. D 14, 633 (1981)ADSGoogle Scholar
  114. O.J. Orient, Phys. Acad. Sci. Hung. 35, 247 (1974)Google Scholar
  115. P.L. Patterson, J. Chem. Phys. 56, 3943 (1972)ADSGoogle Scholar
  116. W. Paul, H. Steinwedel, German Patent 944900 (1956); U.S. Patent 2939952 (1960)Google Scholar
  117. Z.Lj. Petrović, Aust. J. Phys. 39, 237 (1986)Google Scholar
  118. Z.Lj. Petrović, R.W. Crompton, G.N. Haddad, Aust. J. Phys. 37, 23 (1984)Google Scholar
  119. D. Piscitelli, A.V. Phelps, J. de Urquijo, E. Basurto, L.C. Pitchford, Phys. Rev. E 68, 046408 (2003)ADSGoogle Scholar
  120. S.D. Pringle, K. Giles, J.L. Wildgoose, J.P. Williams, S.E. Slade, K. Thalassinos, R.H. Bateman, M.T. Bowers, J.H. Scrivea, Int. J. Mass Spectrom. 261, 1 (2007)Google Scholar
  121. R.W. Purves, R. Guevremont, Anal. Chem. 71, 2346 (1999)Google Scholar
  122. R.W. Purves, R. Guevremont, S. Day, C.W. Pipich, M.S. Matyjaszczyk, Rev. Sci. Instrum. 69, 4094 (1998)ADSGoogle Scholar
  123. F. Rebentrost, Chem. Phys. Lett. 17, 486 (1972)ADSGoogle Scholar
  124. H.E. Revercomb, E.A. Mason, Anal. Chem. 47, 970 (1975)Google Scholar
  125. R.E. Robson, Aust. J. Phys. 26, 203 (1973)ADSGoogle Scholar
  126. R.E. Robson, K. Mada, T. Makabe, R.D. White, Aust. J. Phys. 48, 335 (1995)ADSGoogle Scholar
  127. R.E. Robson, R.D. White, T. Makabe, Ann. Phys. 261, 74 (1997)ADSGoogle Scholar
  128. R.E. Robson, R. Winkler, F. Sigeneger, Phy. Rev. E 65, 056410 (2002)ADSGoogle Scholar
  129. R.E. Robson, P. Nicoletopoulos, B. Li, R.D. White, Plasma Sources Sci. Technol. 17, 024020 (2008)ADSGoogle Scholar
  130. R.E. Robson, P. Nicoletopoulos, M. Hildebrandt, R.D. White, J. Chem. Phys. 137, 214112 (2012)ADSGoogle Scholar
  131. S. Rokushika, H. Hatano, M.A. Baim, H.H. Hill Jr., Anal. Chem. 57, 1902 (1985)Google Scholar
  132. B.T. Ruotolo, K. Giles, I. Campuzano, A.M. Sandercock, R.H. Bateman, C.V. Robinson, Science 310, 1658 (2005)ADSGoogle Scholar
  133. S.I. Sandler, E.A. Mason, J. Chem. Phys. 47, 4653 (1967)ADSGoogle Scholar
  134. O. Sappart, J.I. Baumbach, Meas. Sci. Technol. 11, 1473 (2000)ADSGoogle Scholar
  135. O. Šašić, J. Jovanović, Z. Lj, J. de Petrović, J.R. Urquijo, J.L. Castrejó-Pita, E. Basurto Hernández-Ávilla, Phys. Rev. E 71, 046408 (2005)ADSGoogle Scholar
  136. B.B. Schneider, E.G. Nazarov, F. Londry, P. Vouras, T.R. Covey, Mass Spectrom. Rev. 35, 687 (2016)ADSGoogle Scholar
  137. A.A. Shvartsburg, Differential Ion Mobility Spectrometery: Nonlinear Ion Transport and Fundamentals of FAIMS (CRC Press, Boca Raton, 2009)Google Scholar
  138. A.A. Shvartsburg, Differential Ion Mobility Spectrometry (CRC Press, Boca Raton, 2009)Google Scholar
  139. A.A. Shvartsburg, R.D. Smith, Anal. Chem. 80, 9689 (2008)Google Scholar
  140. A.A. Shvartsburg, R.R. Hudgins, P. Dugourd, M.F. Jarrold, J. Phys. Chem. A 101, 1684 (1997)ADSGoogle Scholar
  141. A.A. Shvartsburg, K. Tang, R.D. Smith, J. Am. Soc. Mass Spectrom. 15, 1487 (2004)Google Scholar
  142. A.A. Shvartsburg, S.V. Mashkevich, R.D. Smith, J. Phys. Chem. A 110, 2663 (2006)Google Scholar
  143. A.A. Shvartsburg, Y.M. Ibrahim, R.D. Smith, J. Am. Soc. Mass Spectrom 25, 480 (2014)ADSGoogle Scholar
  144. W.F. Siems, L.A. Viehland, H.H. Hill Jr., Anal. Chem. 84, 9782 (2012)Google Scholar
  145. W.F. Siems, C. Wu, E.E. Tarver, H.H. Hill Jr., P.R. Larsen, G.D. McMinn, Anal. Chem. 66, 4195 (1994)Google Scholar
  146. J.A. Silvira, W. Danielson, M.E. Ridgeway, M.A. Park, Int. J. Ion Mobil. Spectrom. 19, 87 (2016)Google Scholar
  147. G.N. Sivalingam, J. Yan, H. Sahota, K. Thalassinos, Int. J. Mass Spectrom. 345–347, 54 (2013)Google Scholar
  148. H.R. Skullerud, S. Holmstrom, J. Phys. D 18, 2375 (1985)ADSGoogle Scholar
  149. D.P. Smith, T.W. Knapman, I. Campuzano, R.W. Malham, J.T. Berryman, S.E. Radford, A.E. Ashcroft, Eur. J. Mass Spectrom. 15, 113 (2009)Google Scholar
  150. A.P. Snyder, C.S. Harden, A.H. Brittain, M.-G. Kim, N.S. Arnold, H.L.C. Meuzelaar, Anal. Chem. 65, 299 (1993)Google Scholar
  151. G.E. Spangler, Int. J. Mass Spectrom. 220, 399 (2002)Google Scholar
  152. S.M. Stow, T. Causon, X. Zheng, R.T. Kurulugama, T. Mairinger, J.C. May, E.E. Rennie, E.S. Baker, R.D. Smith, J.A. McLean, S. Hann, J.C. Fjeldsted, Anal. Chem. 89, 9048 (2017)Google Scholar
  153. Y. Sun, S. Vahidi, M.A. Sowole, L. Konermann, J. Am. Soc. Mass Spectrom. 27, 31 (2016)ADSGoogle Scholar
  154. N. Takata, J. Phys. D 18, 1795 (1985)Google Scholar
  155. A.M. Tyndall, The Mobility of Positive Ions in Gases (Cambridge University Press, London, 1938). Ch. 5Google Scholar
  156. J. de Urquijo, AIP Conf. Proc. 740, 33 (2004)Google Scholar
  157. G. Vidal-de-Miguel, M. Macia, J. Cuevas, Anal. Chem. 84, 7831 (2012)Google Scholar
  158. L.A. Viehland, Int. J. Mass Spectrom. 18, 171 (2015)Google Scholar
  159. L.A. Viehland, Int. J. Mass Spectrom. 19, 1 (2016a)Google Scholar
  160. L.A. Viehland, Int. J. Mass Spectrom. 19, 11 (2016b)Google Scholar
  161. L.A. Viehland, D.E. Goeringer, J. Chem. Phys. 120, 9090 (2004)ADSGoogle Scholar
  162. L.A. Viehland, D.E. Goeringer, J. Phys. B 38, 3987 (2005)ADSGoogle Scholar
  163. L.A. Viehland, D.E. Goeringer, J. Phys. Conf. Ser. 115, 012011 (2008)Google Scholar
  164. L.A. Viehland, E.A. Mason, At. Data Nucl. Data Tables 60, 37 (1995)ADSGoogle Scholar
  165. L.A. Viehland, C.-L. Yang, Mol. Phys. 113, 3874 (2015)ADSGoogle Scholar
  166. L.A. Viehland, E.A. Mason, J.H. Whealton, J. Chem. Phys. 82, 4715 (1975)ADSGoogle Scholar
  167. L.A. Viehland, R. Guevremont, R.W. Purves, D.A. Barnett, Int. J. Mass Spectrom. 197, 123 (2000)Google Scholar
  168. L.A. Viehland, E.A. Kabbe, V.V. Dixit, J. Phys. B 38, 4011 (2005)ADSGoogle Scholar
  169. L.A. Viehland, D.M. Danailov, D.E. Goeringer, J. Phys. B 39, 3993 (2006a)ADSGoogle Scholar
  170. L.A. Viehland, D.M. Danailov, D.E. Goeringer, J. Phys. B 39, 4015 (2006b)ADSGoogle Scholar
  171. L.A. Viehland, A. Lutfullaeva, J. Dashdorj, R. Johnsen, Int. J. Ion Mobil. Spectrom 20, 95 (2017)Google Scholar
  172. Y. Wang, R.J. Van Brunt, Phys. Plasmas 4, 551 (1997)ADSGoogle Scholar
  173. J.H. Whealton, S.B. Woo, Phys. Rev. A 6, 2319 (1972)ADSGoogle Scholar
  174. J.H. Whealton, E.A. Mason, R.E. Robson, Phys. Rev. A 9, 1017 (1974)ADSGoogle Scholar
  175. R.D. White, Time-dependent multi-term soltuion of Boltzmann’s equation for charged particle swarms in temporally-varying electric fields. Ph.D. thesis, James Cook University of North Queensland, Australia (1996)Google Scholar
  176. R.D. White, R.E. Robson, K.F. Ness, Aust. J. Phys. 48, 925 (1995)ADSGoogle Scholar
  177. D. Wobschall, J.R. Graham, Jr., D.P. Malone, Phys. Rev. 131 (1565) (1963)ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Science DepartmentChatham UniversityPittsburghUSA

Personalised recommendations