Skip to main content

A Rainfall Prediction Tool for Sustainable Agriculture Using Random Forest

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11288))

Abstract

In recent years world’s governments have focused its efforts on the development of the Sustainable Agriculture were all resources, especially water resources, are used in a more environmentally friendly manner. In this paper, we present an approach for estimating daily accumulated rainfall using multi-spatial scale multi-source data based on Machine Learning algorithms for three HABs in the Andean Region of Colombia where the agricultural activities are one of the main production activities. The proposed approach uses data from different rain-related variables such as vegetation index, elevation data, rain rate and temperature with the aim of the development of a rain forecast, able to respond to local or large-scale rain events. The results show that the trained model can detect local rain events event when no meteorological station data was used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feenstra, G.: What is sustainable agriculture? — UC SAREP, UC Sustainable Agriculture Research and Education Program (2017). http://asi.ucdavis.edu/programs/sarep/about/what-is-sustainable-agriculture. Accessed 23 May 2018

  2. Ministerio De Agricultura y Desarrollo Rural and Departamento Administrativo Nacional de Estadística: El cultivo de la papa, Solanum tuberosum Alimento de gran valor nutritivo, clave en la seguridad alimentaria mundial. Insumos y Factores asociados a la producción agropecuaria, no. 15, p. 92 (2013)

    Google Scholar 

  3. Abbot, J., Marohasy, J.: Forecasting extreme monthly rainfall events in regions of Queensland, Australia using artificial neural networks. Int. J. Sustain. Dev. Plan. 12(7), 1117–1131 (2017)

    Article  Google Scholar 

  4. Unnikrishnan, P., Jothiprakash, V.: Daily rainfall forecasting for one year in a single run using singular spectrum analysis. J. Hydrol. 561, 609–621 (2018)

    Article  Google Scholar 

  5. Rasel, R.I., Sultana, N., Meesad, P.: An application of data mining and machine learning for weather forecasting. In: Meesad, P., Sodsee, S., Unger, H. (eds.) IC2IT 2017. AISC, vol. 566, pp. 169–178. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60663-7_16

    Chapter  Google Scholar 

  6. Ahmed, B.: Predictive capacity of meteorological data: will it rain tomorrow? In: Proceedings of the 2015 Science and Information Conference, SAI 2015, pp. 199–205 (2015)

    Google Scholar 

  7. Chu, W.T., Zheng, X.Y., Ding, D.S.: Image2weather: a large-scale image dataset for weather property estimation. In: Proceedings - 2016 IEEE 2nd International Conference on Multimedia Big Data, BigMM 2016, pp. 137–144 (2016)

    Google Scholar 

  8. Gupta, U., Jitkajornwanich, K., Elmasri, R., Fegaras, L.: Adapting k-means clustering to identify spatial patterns in storms. In: Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016, pp. 2646–2654 (2016)

    Google Scholar 

  9. Hong, Y., Chiang, Y.M., Liu, Y., Hsu, K.L., Sorooshian, S.: Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map. Int. J. Remote Sens. 27(23), 5165–5184 (2006)

    Article  Google Scholar 

  10. Gope, S., Sarkar, S., Mitra, P., Ghosh, S.: Early prediction of extreme rainfall events: a deep learning approach. In: Perner, P. (ed.) ICDM 2016. LNCS (LNAI), vol. 9728, pp. 154–167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41561-1_12

    Chapter  Google Scholar 

  11. Pencue-Fierro, E.L., Solano-Correa, Y.T., Corrales-Muñoz, J.C., Figueroa-Casas, A.: A semi-supervised hybrid approach for multitemporal multi-region multisensor landsat data classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(12), 5424–5435 (2016)

    Article  Google Scholar 

  12. Ho, P.-G.P.: Geoscience and Remote Sensing. INTECH (2009)

    Google Scholar 

  13. Ministerio de Ambiente Vivienda Y Desarrollo Teritorial, Ministerio de Hacienda y Crédito Público: CONPES 3624 - Programa para el saneamiento, manejo y recuperación ambiental de la cuenca alta del río Cauca, p. 60 (2009)

    Google Scholar 

  14. National Aeronautics and Space Administration: TRMM Home Page | Precipitation Measurement Missions. https://pmm.nasa.gov/trmm. Accessed 29 Mar 2018

  15. Vicente, G.A., Scofield, R.A., Menzel, W.P.: The operational GOES infrared rainfall estimation technique. Bull. Am. Meteorol. Soc. 79(9), 1883–1893 (1998)

    Article  Google Scholar 

  16. Meteoblue. https://content.meteoblue.com/en/about-us. Accessed 28 Jul 2017

  17. MODIS Vegetation Index Products. https://modis.gsfc.nasa.gov/data/dataprod/mod13.php. Accessed 28 Jul 2017

  18. NASA: Shuttle Radar Topography Mission 2017. https://www2.jpl.nasa.gov/srtm/. Accessed 28 Jul 2017

  19. N. C. P. Center. NOAA’s Climate Prediction Center

    Google Scholar 

  20. Sasaki, H., Kurihara, K.: Relationship between precipitation and elevation in the present climate reproduced by the non-hydrostatic regional climate model. SOLA 4, 109–112 (2008)

    Article  Google Scholar 

  21. Purevdorj, T., Hoshino, B., Ganzorig, S., Tserendulam, T.: Spatial and temporal patterns of NDVI response to precipitation in Mongolian Steppe. J. Rakuno Gakuen Univ. 35(2), 55–62 (2011)

    Google Scholar 

  22. Umoh, A.A.: Rainfall and relative humidity occurrence patterns in Uyo metropolis, Akwa Ibom State, South-South Nigeria. IOSR J. Eng. 03(08), 27–31 (2013)

    Article  Google Scholar 

  23. Trenberth, K.E., Shea, D.J.: Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32(14) (2005)

    Article  Google Scholar 

  24. NOAA Center for Weather and Climate Prediction: Climate Prediction Center (CPC), Madden Jullian Oscillation (MJO) 2013. http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. Accessed 28 Jul 2017

  25. Corrales, D.C., Corrales, J.C., Ledezma, A.: How to address the data quality issues in regression models: a guided process for data cleaning. Symmetry (Basel) 10(4), 1–20 (2018)

    Google Scholar 

  26. Vink, G., Frank, L.E., Pannekoek, J., van Buuren, S.: Predictive mean matching imputation of semicontinuous variables. Stat. Neerl. 68(1), 61–90 (2014)

    Article  MathSciNet  Google Scholar 

  27. Andridge, R.R., Little, R.J.: A review of hot deck imputation for survey non-response. Int. Stat. Rev. 78(1), 40–64 (2010). NIH Public Access

    Article  Google Scholar 

  28. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Stekhoven, D.J., Bühlmann, P.: Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2012)

    Article  Google Scholar 

  30. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  31. Loh, W.-Y.: Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)

    Article  Google Scholar 

  32. Quinlan, J.R.: An overview of Cubist. Retrieved June 2017. http://rulequest.com/cubist-win.html. Accessed 30 Mar 2018

Download references

Acknowledgments

The authors are grateful to the Telematics Engineering Group (GIT) and the Optics and Laser Group (GOL) of the University of Cauca, The University of Cauca, Meteoblue, RICCLISA Program, and the AgroCloud project for supporting this research, as well as the AQUARISC program for the PhD support granted to Cristian Valencia-Payan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Valencia-Payan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valencia-Payan, C., Corrales, J.C. (2018). A Rainfall Prediction Tool for Sustainable Agriculture Using Random Forest. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Soft Computing. MICAI 2018. Lecture Notes in Computer Science(), vol 11288. Springer, Cham. https://doi.org/10.1007/978-3-030-04491-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04491-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04490-9

  • Online ISBN: 978-3-030-04491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics