Skip to main content

Analysis of Low-Frequency Instabilities in Low-Temperature Magnetized Plasma

  • Chapter
  • First Online:
Fractional Dynamics, Anomalous Transport and Plasma Science

Abstract

Assuming that the Q-machine magnetized plasma particles are moving on continuous and non-differentiable curves (fractal curves), a theoretical model was developed in the frame of the scale relativity theory. The model is able to explain some characteristics of the potential relaxation instability and the electrostatic ion-cyclotron instability, as well as the interaction between these two instabilities which leads to the amplitude and frequency modulation of the second instability by the first one. Experimental result are shown, which are in agreement with the theoretical model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Agop, N. Forna, I. Casian-Botez, C. Bejenariu, New theoretical approach of the physical processes in nanostructures. J. Comput. Theor. Nanosci. 5, 483–489 (2008)

    Article  Google Scholar 

  2. M. Agop, P. Nica, M. Girtu, On the vacuum status in Weyl-Dirac theory. Gen. Relativ. Gravit. 40, 35–55 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Agop, P. Nica, O. Niculescu, D.G. Dimitriu, Experimental and theoretical investigations of the negative differential resistance in a discharge plasma. J Phys Soc Japan 81, 064502 (2012)

    Article  ADS  Google Scholar 

  4. C. Avram, R. Schrittwieser, M. Sanduloviciu, Possible excitation and ionization processes in a “collisionless” alkaline plasma. Int. J. Mass Spectrom. 184, 129–143 (1999)

    Article  Google Scholar 

  5. C. Avram, R. Schrittwieser, M. Sanduloviciu, Current jumps and hysteresis in a single-ended Q-machine in connection with the electrostatic ion-cyclotron instability. Contrib. Plasma Phys. 39, 223–233 (1999)

    Article  ADS  Google Scholar 

  6. C. Avram, R. Schrittwieser, M. Sanduloviciu, Nonlinear effects in the current-voltage characteristic of a low-density Q-machine plasma: I. Related to the potential relaxation instability. J. Phys. D Appl. Phys. 32, 2750–2757 (1999)

    Article  ADS  Google Scholar 

  7. C. Avram, R. Schrittwieser, M. Sanduloviciu, Nonlinear effects in the current-voltage characteristic of a low-density Q-machine plasma: II. Related to the electrostatic ion-cyclotron instability. J. Phys. D: Appl. Phys. 32, 2758–2762 (1999)

    Article  ADS  Google Scholar 

  8. I. Casian-Botez, M. Agop, P. Nica, V. Paun, V. Munceleanu, Conductive and convective types behaviors at nano-time scales. J. Comput. Theor. Nanosci. 7, 2271–2280 (2010)

    Article  Google Scholar 

  9. C. Ciubotariu, M. Agop, Absence of a gravitational analog to the Meissner effect. Gen. Relativ. Gravit. 28, 405–412 (1996)

    Article  ADS  Google Scholar 

  10. M. Colotin, G.O. Pompilian, P. Nica, S. Gurlui, V. Paun, M. Agop, Fractal transport phenomena through the scale relativity model. Acta Phys. Pol. A 116, 157–164 (2009)

    Article  ADS  Google Scholar 

  11. N. D’Angelo, R.W. Motley, Electrostatic oscillations near the ion cyclotron frequency. Phys. Fluids 5, 633–634 (1962)

    Article  ADS  Google Scholar 

  12. D.G. Dimitriu, Electrostatic Instabilities in the Q-machine Plasma (in Romanian) (Demiurg Editorial House, Iasi, Romania, 2006)

    Google Scholar 

  13. D.G. Dimitriu, V. Ignatescu, C. Ionita, E. Lozneanu, M. Sanduloviciu, R.W. Schrittwieser, The influence of electron impact ionisations on low frequency instabilities in a magnetised plasma. Int. J. Mass Spectrom. 223–224, 141–158 (2003)

    Article  Google Scholar 

  14. D.G. Dimitriu, C. Ionita, R. Schrittwieser, Nonlinear effects related to the simultaneous excitation of three instabilities in magnetized plasma. Contrib. Plasma Phys. 51, 554–559 (2011)

    Article  ADS  Google Scholar 

  15. W.E. Drummond, M.N. Rosenbluth, Anomalous diffusion arising from microinstabilities in a plasma. Phys. Fluids 5, 1507–1513 (1962)

    Article  ADS  Google Scholar 

  16. S. Gurlui, M. Agop, M. Strat, S. Bacaita, Some experimental and theoretical results on the anodic patterns in plasma discharge. Phys. Plasmas 13, 063503 (2006)

    Article  ADS  Google Scholar 

  17. S. Gurlui, M. Agop, P. Nica, M. Ziskind, C. Focsa, Experimental and theoretical investigations of transitory phenomena in high-fluence laser ablation plasma. Phys. Rev. E 78, 026405 (2008)

    Article  ADS  Google Scholar 

  18. T.Y. Hou, Multi-Scale Phenomena In Complex Fluids: Modeling, Analysis and Numerical Simulations (World Scientific, Singapore, 2009)

    Book  Google Scholar 

  19. S. Iizuka, P. Michelsen, J.J. Rasmussen, R. Schrittwieser, R. Hatakeyama, K. Saeki, N. Sato, Dynamics of a potential barrier formed on the tail of a moving double layer in a collisionless plasma. Phys. Rev. Lett. 48, 145–148 (1982)

    Article  ADS  Google Scholar 

  20. S. Iizuka, P. Michelsen, J.J. Rasmussen, R. Schrittwieser, R. Hatakeyama, K. Saeki, N. Sato, Double layer dynamics in a collisionless magnetoplasma. J. Phys. Soc. Jpn. 54, 2516–2529 (1985)

    Article  ADS  Google Scholar 

  21. E.A. Jackson, in Perspectives in Nonlinear Dynamics, vols 1 and 2 (Cambridge University Press, Cambridge, UK, 1991)

    Google Scholar 

  22. M.E. Koepke, W.E. Amatucci, J.J. Carol III, T.E. Sheridan, Experimental verification of the inhomogeneous energy-density driven instability. Phys. Rev. Lett. 72, 3355–3358 (1994)

    Article  ADS  Google Scholar 

  23. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Pergamon Press, Oxford, UK, 1987)

    Google Scholar 

  24. B. Mandelbrot, in The fractal geometry of nature (updated and augm. ed.) (W. H. Freeman, New York, USA, 1983)

    Google Scholar 

  25. G.V. Munceleanu, V.P. Paun, I. Casian-Botez, M. Agop, The microscopic-macroscopic scale transformation through a chaos scenario in the fractal space-time theory. Int. J. Bif. Chaos 21, 603–618 (2011)

    Article  Google Scholar 

  26. P. Nica, P. Vizureanu, M. Agop, S. Gurlui, C. Focsa, N. Forna, P.D. Ioannou, Z. Borsos, Experimental and theoretical aspects of aluminium expanding laser plasma. Jpn. J. Appl. Phys. 48, 066001 (2009)

    Article  ADS  Google Scholar 

  27. P. Nica, M. Agop, S. Gurlui, C. Bejinariu, C. Focsa, Characterization of aluminium laser produced plasma by target current measurements. Jpn. J. Appl. Phys. 51, 106102 (2012)

    Article  ADS  Google Scholar 

  28. L. Nottale, Fractal Space-Time and Microphysics: Towards A Theory Of Scale Relativity (World Scientific, Singapore, 1993)

    Book  Google Scholar 

  29. L. Nottale, Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics (Imperial College Press, London, UK, 2011)

    Book  Google Scholar 

  30. J.J. Rasmussen, R. Schrittwieser, On the current-driven electrostatic ion-cyclotron instability: a review. IEEE Trans. Plasma Sci. 19, 457–501 (1991)

    Article  ADS  Google Scholar 

  31. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. Christopher Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J.P. Boeuf, T.J. Sommerer, M.J. Kushner, U. Czarnetzki, N. Mason, The 2012 plasma roadmap. J. Phys. D: Appl. Phys. 45, 253001 (2012)

    Article  ADS  Google Scholar 

  32. M. Sanduloviciu, Quantum processes as generators of the energy source for ion-cyclotron oscillations. Rev. Roum. Phys. 32, 745–756 (1987)

    Google Scholar 

  33. M. Sanduloviciu, E. Lozneanu, On the generation mechanism and the instability properties of anode double layers. Plasma Phys. Control. Fusion 28, 585–595 (1986)

    Article  ADS  Google Scholar 

  34. N. Sato, R. Hatakeyama, A mechanism for potential-driven electrostatic ion-cyclotron oscillations in plasma. J. Phys. Soc. Japan 54, 1661–1664 (1985)

    Article  ADS  Google Scholar 

  35. R. Schrittwieser, Modulation of the current-driven ion-cyclotron instability by the potential relaxation instability. Phys. Fluids 26, 2250–2255 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of Romanian Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCE-2016-355, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Gheorghe Dimitriu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dimitriu, DG., Agop, M. (2018). Analysis of Low-Frequency Instabilities in Low-Temperature Magnetized Plasma. In: Skiadas, C. (eds) Fractional Dynamics, Anomalous Transport and Plasma Science. Springer, Cham. https://doi.org/10.1007/978-3-030-04483-1_5

Download citation

Publish with us

Policies and ethics