Abstract
Entanglement represents one of the basic features of quantum theory, which has for a long time been described as “mysterious” and “potentially paradoxical”. Although the term “entanglement” was not explicitly used by Einstein, Podolsky and Rosen in their celebrated article “Can quantum mechanical description of reality be considered complete?”, entangled pure states are essentially involved in the paradoxical situation discussed in their paper. Chapter 3 is devoted to a logical analysis of the Einstein-Podolsky-Rosen paradox (in jargon “EPR-paradox”). It is shown how “EPR-situations” have later on been transformed into powerful resources, even from a technological point of view. As a significant example, teleportation-experiments are briefly illustrated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31(32), 555–563 (1936)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of reality be considered complete? Phys. Rev. 47, 777–780 (1935)
Bohm, D.: Quantum Theory. Prentice-Hall, Englewoods Cliffs (1951)
Rosen, N.: Quantum mechanics and reality. In: Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics. World Scientific, Singapore (1985)
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Zeilinger, A.: Einsteins Schleier. Die neue Welt der Quantenphysik. Verlag C. H. Beck oHG, München (2003)
Beltrametti, E., Dalla Chiara, M.L., Giuntini, R., Sergioli, G.: Quantum teleportation and quantum epistemic semantics. Math. Slovaca 62(6), 1–24 (2012)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)
Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80(6), 1121–1125 (1998)
Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenback, R., Lindenthal, M., Walther, P., Zeilinger, A.: Communications: Quantum teleportation across the Danube. Nature 430(7002), 849 (2004)
Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., Yang, K.X., Han, X., Yao, Y.Q., Li, J., Wu, H.Y., Wan, S., Liu, L., Liu, D.Q., Kuang, Y.W., He, Z.P., Shang, P., Guo, C., Zheng, R.-H., Tian, K., Zhu, Z.C., Liu, N.L., Lu, C.Y., Shu, R., Chen, Y.A., Peng, C.Z., Wang, J.Y., Pan, J.W.: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Dalla Chiara, M.L., Giuntini, R., Leporini, R., Sergioli, G. (2018). Entanglement: Mystery and Resource. In: Quantum Computation and Logic. Trends in Logic, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-04471-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-04471-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04470-1
Online ISBN: 978-3-030-04471-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)