Skip to main content

A Method to Improve the Performance of Raster Selection Based on a User-Defined Condition: An Example of Application for Agri-environmental Data

  • Conference paper
  • First Online:
Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II (AACC 2018)

Abstract

More and more environmental and agricultural data are now acquired with a high precision and temporal frequency. These data are often represented in the form of rasters and are useful for agricultural activities or climate change analyses. In this paper, we propose a new method to process very large raster. We present a new technique to improve the execution time of the selection and calculation of data summaries (e.g., the average temperature for a region) on a temporal sequence of rasters. We illustrate the use of our approach on the case of temperature data, which is important information both for agriculture and for climate change analyses. We have generated several data sets in order to analyze the influence of the different value properties on the process performance. One of our final goals is to provide information about the value conditions in which the proposed processing should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawant, S., Durbha, S.S., Jagarlapudi, A.: Interoperable agro-meteorological observation and analysis platform for precision agriculture: A case study in citrus crop water requirement estimation. Comput. Electron. Agric. 138, 175–187 (2017)

    Article  Google Scholar 

  2. Lee, W.S., Ehsani, R.: Sensing systems for precision agriculture in Florida. Comput. Electron. Agric. 112, 2–9 (2015)

    Article  Google Scholar 

  3. Ahmedi, F., Ahmedi, L., O’Flynn, B., Kurti, A., Tahirsylaj, S., Bytyçi, E., Sejdiu, B., Salihu, A.: InWaterSense: An intelligent wireless sensor network for monitoring surface water quality to a river in Kosovo. Int. J. Agric. Environ. Inf. Syst. 9, 39–61 (2018)

    Article  Google Scholar 

  4. Devadevan, V., Sankaranarayanan, S.: Forest fire information system using wireless sensor network. Int. J. Agric. Environ. Inf. Syst. 8, 52–67 (2017)

    Article  Google Scholar 

  5. Kang, M.A., Pinet, F., Schneider, M., Chanet, J.P., Vigier, F.: How to design geographic database? Specific UML profile and spatial OCL applied to wireless Ad Hoc networks. In: 7th Conference on Geographic Information Science (AGILE 2004), Heraklion, GRC, April 29–May 1 2004, pp. 289–299 (2004)

    Google Scholar 

  6. Pinet, F.: Entity-relationship and object-oriented formalisms for modeling spatial environmental data. Environ. Model. Software 30, 80–91 (2012)

    Article  Google Scholar 

  7. Pinet, F., Miralles, A., Papajorgji, P.: Modeling: a central activity for designing and implementing flexible agricultural and environmental information systems. Int. J. Agric. Environ. Syst. 1 (2010)

    Google Scholar 

  8. Machwitz, M., Hass, E., Junk, J., Udelhoven, T., Schlerf, M.: CropGIS – a web application for the spatial and temporal visualization of past, present and future crop biomass development. Comput. Electron. Agric. (2018)

    Google Scholar 

  9. Roussey, C., Bernard, S., Pinet, F., Reboud, X., Cellier, V., Sivadon, I., Simonneau, D., Bourigault, A.-L.: A methodology for the publication of agricultural alert bulletins as LOD. Comput. Electron. Agric. 142, 632–650 (2017)

    Article  Google Scholar 

  10. Ramar, K., Gurunathan, G.: Semantic web based agricultural information integration. Int. J. Agric. Environ. Inf. Syst. 8, 39–51 (2017)

    Article  Google Scholar 

  11. Rabindra, B.: CloudGanga: cloud computing based SDI model for ganga river basin management in India. Int. J. Agric. Environ. Inf. Syst. 8, 54–71 (2017)

    Article  Google Scholar 

  12. Laurini, R., Thompson, D.: Fundamentals of spatial information systems (1992)

    Chapter  Google Scholar 

  13. Kang, M.-A., Zaamoune, M., Pinet, F., Bimonte, S., Beaune, P.: Performance optimization of grid aggregation in spatial data warehouses. Int. J. Digital Earth 8, 970–988 (2015)

    Article  Google Scholar 

  14. Diamond, H.J., Karl, T.R., Palecki, M.A., Baker, C.B., Bell, J.E., Leeper, R.D., Easterling, D.R., Lawrimore, J.H., Meyers, T.P., Helfert, M.R., Goodge, G., Thorne, P.W.: U.S. Climate Reference Network after one decade of operations: status and assessment. Bull. Amer. Meteor. Soc. 94, 489–498 (2013). https://doi.org/10.1175/BAMS-D-12-00170.1

    Article  Google Scholar 

  15. Hozo, S.P., Djulbegovic, B., Hozo, I.:. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 5, 13 (2005). https://doi.org/10.1186/1471-2288-5-13

  16. Melesse, A.M., Weng, Q., Thenkabail, P.S., Senay, G.B.: Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors 7, 3209–3241 (2007)

    Article  Google Scholar 

  17. Zhang, J., You, S., Gruenwald, L.: Parallel online spatial and temporal aggregations on multi-core CPUs and many-core GPUs. Inf. Syst. 44, 134–154 (2014)

    Article  Google Scholar 

  18. Prasad, S.K., McDermott, M., Puri, S., Shah, D., Aghajarian, D., Shekhar, S., Zhou, X.: A vision for GPU-accelerated parallel computation on geo-spatial datasets. SIGSPATIAL Special 6, 19–26 (2015)

    Article  Google Scholar 

  19. Simion, B., Ray, S., Brown, A.D.: Speeding up Spatial Database Query Execution using GPUs. Procedia Comput. Sci. 9, 1870–1879 (2012)

    Article  Google Scholar 

  20. Data management and analytics in interdisciplinary research. Comput. Electron. Agric. 145 130–141 (2018)

    Google Scholar 

  21. Lehmann, R.J., Reiche, R., Schiefer, G.: Future internet and the agri-food sector: state-of-the-art in literature and research. Comput. Electron. Agric. 89, 158–174 (2012)

    Article  Google Scholar 

  22. O’Grady, M.J., O’Hare, G.M.P.: Modelling the smart farm. Inf. Process. Agric. 4, 179–187 (2017)

    Google Scholar 

  23. Severino, G., D’Urso, G., Scarfato, M., Toraldo, G.: The IoT as a tool to combine the scheduling of the irrigation with the geostatistics of the soils. Future Gener. Comput. Syst. 82, 268–273 (2018)

    Article  Google Scholar 

  24. Talavera, J.M., Tobón, L.E., Gómez, J.A., Culman, M.A., Aranda, J.M., Parra, D.T., Quiroz, L.A., Hoyos, A., Garreta, L.E.: Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 142, 283–297 (2017)

    Article  Google Scholar 

  25. Tzounis, A., Katsoulas, N., Bartzanas, T., Kittas, C.: Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 164, 31–48 (2017)

    Article  Google Scholar 

  26. Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J.: Big data in smart farming – a review. Agric. Syst. 153, 69–80 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by grants from the French program «investissement d’avenir» managed by the Agence Nationale de la Recherche of the French government (ANR), the European Commission (Auvergne FEDER funds) and «Région Auvergne» in the framework of LabEx IMobS 3 (ANR-10- LABX-16-01). We also acknowledge the support received from the Agence Nationale de la Recherche of the French government through the program «investissement d’avenir» 16-IDEX-0001 CAP 20-25 on the general topic of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Driss En-Nejjary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

En-Nejjary, D., Pinet, F., Kang, MA. (2019). A Method to Improve the Performance of Raster Selection Based on a User-Defined Condition: An Example of Application for Agri-environmental Data. In: Corrales, J., Angelov, P., Iglesias, J. (eds) Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II. AACC 2018. Advances in Intelligent Systems and Computing, vol 893. Springer, Cham. https://doi.org/10.1007/978-3-030-04447-3_13

Download citation

Publish with us

Policies and ethics