Skip to main content

Inference System for Irrigation Scheduling with an Intelligent Agent

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 893))

Abstract

The design and implementation of an inference method to schedule irrigation tasks in agriculture, based on the concept of rational agent is explained in this paper. Through the use of a raspberry-pi and xbee devices, the agent interacts with its environment acquiring soil moisture, soil temperature, luminosity, air temperature and rain data. Membership functions and a Mamdani inference methodology were implemented on the raspberry-pi to define irrigation time. Furthermore solenoid valves were used as actuators to apply the amount of water prescribed on the field. The inference system uses luminosity and ambient temperature data to define periods with high levels of evapotranspiration and soil moisture sensors to determine the Volumetric Water Content (VWC). As result of this implementation, temperature membership functions were defined, including the annual averages of minimum (9 \(^\circ \)C) and maximum (20 \(^\circ \)C) temperatures, according with weather data obtained in Nobsa, Boyacá, Colombia. Values between 0 and 2500 lx, were defined in the universe of discourse of brightness and soil moisture membership was defined using field capacity and permanent wilting points. The system developed allows to maintain the VWC in the soil near to the field capacity value, wherewith, soil moisture is maintained at the optimum level necessary for the correct development of a crop.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bendre, M., Thool, R., Thool, V.: Big data in precision agriculture: weather forecasting for future farming. In: 2015 1st International Conference on Proceedings of the Next Generation Computing Technologies (NGCT), pp. 744–750. IEEE (2015)

    Google Scholar 

  2. Mrinmayi, G., Bhagyashri, D., Atul, V.: A smart irrigation system for agriculture based on wireless sensors. Int. J. Innov. Res. Sci. Eng. Technol. 5, 6893–6899 (2016)

    Google Scholar 

  3. Döll, P.: Impact of climate change and variability on irrigation requirements: a global perspective. Clim. Change 54(3), 269–293 (2002)

    Article  Google Scholar 

  4. Zhemukhov, R.S., Zhemukhova, M.M.: System of mathematical models to manage water and land resources at the regional level in case of anthropogenous climate changes taking into account economic indicators and ecological consequences. In: IEEE Conference on Quality Management, Transport and Information Security, Information Technologies (IT&MQ&IS), pp. 256–261. IEEE (2016)

    Google Scholar 

  5. Riediger, J., Breckling, B., Svoboda, N., Schröder, W.: Modelling regional variability of irrigation requirements due to climate change in Northern Germany. Sci. Total. Environ. 541, 329–340 (2016)

    Article  Google Scholar 

  6. Isern, D., Abelló, S., Moreno, A.: Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation. Comput. Electron. Agric. 87, 1–13 (2012)

    Article  Google Scholar 

  7. Smith, R.: Review of precision irrigation technologies and their applications. University of Southern Queensland, Technical report (2011)

    Google Scholar 

  8. Nautiyal, M., Grabow, G.L., Miller, G.L., Human, R.L.: Evaluation of two smart irrigation technologies in Cary, North Carolina. In: Proceedings of the Conference: 2010 Pittsburgh, Pennsylvania, 20 June–23 June, 2010, vol. 1. American Society of Agricultural and Biological Engineers (2010)

    Google Scholar 

  9. Lehnert, M.: Factors aecting soil temperature as limits of spatial interpretation and simulation of soil temperature. Acta Universitatis Palackianae Olomucensis–Geographica 45(1), 5–21 (2014)

    Google Scholar 

  10. Datta, S., Taghvaeian, S., Stivers, J.: Understanding soil water content and thresholds for irrigation management. Oklahoma Cooperative Extension Service BAE-1537. Division of Agricultural Sciences and Natural Resources, Oklahoma State University (2017)

    Google Scholar 

  11. Mweso, E., de Bruin, S.: Evaluating the importance of soil moisture availability, as a land quality, on selected rainfed crops in Serowe area, Botswana. ITC (2003)

    Google Scholar 

  12. Mihailovic, B., Cvijanovic, D., Milojevic, I., Filipovic, M.: The role of irrigation in development of agriculture in srem district1. Ekonomika Poljoprivrede 61(4), 989 (2014)

    Article  Google Scholar 

  13. Chavan, C., Karande, P.: Wireless monitoring of soil moisture, temperature & humidity using zigbee in agriculture. Int. J. Eng. Trends 11(10), 493–497 (2014)

    Article  Google Scholar 

  14. Touati, F., Al-Hitmi, M., Benhmed, K., Tabish, R.: fuzzy logic based irrigation system enhanced with wireless data logging applied to the state of Qatar. Comput. Electron. Agric. 98, 233–241 (2013)

    Article  Google Scholar 

  15. Sui, R., Fisher, D.K., Barnes, E.M.: Soil moisture and plant canopy temperature sensing for irrigation application in cotton. J. Agric. Sci. 4(12), 93 (2012)

    Google Scholar 

  16. Majone, B., Viani, F., Filippi, E., Bellin, A., Massa, A., Toller, G., Robol, F., Salucci, M.: Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale. Procedia Environ. Sci. 19, 426–435 (2013)

    Article  Google Scholar 

  17. Terzis, A., Musaloiu-E, R., Cogan, J., Szlavecz, K., Szalay, A., Gray, J., Ozer, S., Liang, C.J., Gupchup, J., Burns, R.: Wireless sensor networks for soil science. Int. J. Sensor Netw. 7(1–2), 53–70 (2010)

    Article  Google Scholar 

  18. Grashey-Jansen, S.: Optimizing irrigation efficiency through the consideration of soil hydrological properties–examples and simulation approaches. Erdkunde, pp. 33–48 (2014)

    Google Scholar 

  19. Hendrawan, Y., Murase, H.: Neural-intelligent water drops algorithm to select relevant textural features for developing precision irrigation system using machine vision. Comput. Electron. Agric. 77(2), 214–228 (2011)

    Article  Google Scholar 

  20. Merot, A., Bergez, J.E.: Irrigate: a dynamic integrated model combining a knowledge-based model and mechanistic biophysical models for border irrigation management. Environ. Model. Softw. 25(4), 421–432 (2010)

    Article  Google Scholar 

  21. Rodriguez-Ortega, W., Martinez, V., Rivero, R., Camara-Zapata, J., Mestre, T., Garcia-Sanchez, F.: Use of a smart irrigation system to study the eects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agric. Water Manag. 183, 158–168 (2017)

    Article  Google Scholar 

  22. Chen, Z., Liu, G.: Application of artificial intelligence technology in water resources planning of river basin. In: 2010 International Conference of Information Science and Management Engineering (ISME), vol. 1, pp. 322–325. IEEE (2010)

    Google Scholar 

  23. Bustos, J., Ricardo, J.: Inteligencia artificial en el sector agropecuario. Seminario de Investigación I. Universidad Nacional de Colombia, Colombia (2005)

    Google Scholar 

  24. Kaur, K.: Machine learning: applications in Indian agriculture. Int. J. Adv. Res. Comput. Commun. Eng. 5(4), 342–344 (2016). https://doi.org/10.17148/IJARCCE.2016.5487

  25. Rafea, A., Hassen, H., Hazman, M.: Automatic knowledge acquisition tool for irrigation and fertilization expert systems. Expert Syst. Appl. 24(1), 49–57 (2003)

    Article  Google Scholar 

  26. Zhang, Q., Wu, C.H., Tilt, K.: Application of fuzzy logic in an irrigation control system. In: Proceedings of the IEEE International Conference on Industrial Technology, ICIT 1996, pp. 593–597. IEEE (1996)

    Google Scholar 

  27. Zanetti, S., Sousa, E., Oliveira, V., Almeida, F., Bernardo, S.: Estimating evapotranspiration using artificial neural network and minimum climatological data. J. Irrig. Drain. Eng. 133(2), 83–89 (2007)

    Article  Google Scholar 

  28. Li, X., Yeh, A.: Multitemporal SAR images for monitoring cultivation systems using case-based reasoning. Remote. Sens. Environ. 90(4), 524–534 (2004)

    Article  Google Scholar 

  29. Fedra, K.: Models, GIS, and expert systems: integrated water resources models. In: Proceedings of the International Conference on Applications of Geographic Information Systems in Hydrology and Water Resources Management, Vienna, vol. 211, pp. 297–308. IAHS Press (1994)

    Google Scholar 

  30. Castelletti, A., Soncini-Sessa, R.: Bayesian networks and participatory modelling in water resource management. Environ. Model. Softw. 22(8), 1075–1088 (2007)

    Article  Google Scholar 

  31. Dessalegne, T., Nicklow, J.W.: Artificial life algorithm for management of multi-reservoir river systems. Water Resour. Manag. 26(5), 1125–1141 (2012)

    Article  Google Scholar 

  32. Ranjithan, S.R.: Role of evolutionary computation in environmental and water resources systems analysis (2005)

    Article  Google Scholar 

  33. Wardlaw, R., Bhaktikul, K.: Application of genetic algorithms for irrigation water scheduling. Irrig. Drain. 53(4), 397–414 (2004)

    Article  Google Scholar 

  34. Reddy, M.J., Kumar, D.N.: Evolving strategies for crop planning and operation of irrigation reservoir system using multi-objective differential evolution. Irrig. Sci. 26(2), 177–190 (2008)

    Article  Google Scholar 

  35. Pant, M., Thangaraj, R., Rani, D., Abraham, A., Srivastava, D.K.: Estimation of optimal crop plan using nature inspired metaheuristics. World J. Model. Simul. 6(2), 97–109 (2010)

    Google Scholar 

  36. Khan, M.A., Islam, M.Z., Hafeez, M.: Evaluating the performance of several data mining methods for predicting irrigation water requirement. In: Proceedings of the Tenth Australasian Data Mining Conference, vol. 134, pp. 199–207. Australian Computer Society, Inc. (2012)

    Google Scholar 

  37. Le Bars, M., Attonaty, J.M., Pinson, S.: An agent-based simulation for water sharing between different users. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, pp. 211–212. ACM (2002)

    Google Scholar 

  38. Romero, R., Muriel, J., García, I., de la Peña, D.M.: Research on automatic irrigation control: state of the art and recent results. Agric. Water Manag. 114, 59–66 (2012)

    Article  Google Scholar 

  39. Boutraa, T., Akhkha, A., Alshuaibi, A., Atta, R.: Evaluation of the effectiveness of an automated irrigation system using wheat crops. Agric. Biol. J. N. Am. 2(1), 80–88 (2011)

    Article  Google Scholar 

  40. O’Shaughnessy, S., Evett, S.R.: Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton. Agric. Water Manag. 97(9), 1310–1316 (2010)

    Article  Google Scholar 

  41. Romero, R., Muriel, J., Garcia, I.: Automatic irrigation system in almonds and walnuts trees based on sap flow measurements. In: VII International Workshop on Sap Flow, vol. 846, pp. 135–142 (2008)

    Google Scholar 

  42. Vicente, R.R.: Hydraulic modelling and control of the soil-plant-atmosphere continuum in woody crops. (doctoral dissertation). (2011). http://hdl.handle.net/10261/96715

  43. Xiang, X.: Design of fuzzy drip irrigation control system based on zigbee wireless sensor network. In: International Conference on Computer and Computing Technologies in Agriculture, pp. 495–501. Springer (2010)

    Google Scholar 

  44. Salazar, R., Rangel, J.C., Pinzón, C., Rodríguez, A.: Irrigation system through intelligent agents implemented with arduino technology. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 2(3), 29–36 (2013)

    Google Scholar 

  45. Benayache, Z., Besançon, G., Georges, D.: A new nonlinear control methodology for irrigation canals based on a delayed input model. In: IFAC Proceedings Volumes, vol. 41, no. 2, pp. 2544–2549 (2008)

    Article  Google Scholar 

  46. Capraro, F., Patino, D., Tosetti, S., Schugurensky, C.: Neural network-based irrigation control for precision agriculture. In: IEEE International Conference on Networking, Sensing and Control, ICNSC 2008, pp. 357–362. IEEE (2008)

    Google Scholar 

  47. Tsang, S., Jim, C.: Applying artificial intelligence modeling to optimize green roof irrigation. Energy Build. 127, 360–369 (2016)

    Article  Google Scholar 

  48. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)

    Google Scholar 

  49. Warner, J., Sexauer, J., scikit-fuzzy, twmeggs, Unnikrishnan, A., Castelõ, G., Batista, F., Badger, T.G., Mishra, H.: Jdwarner/scikit-fuzzy: Scikit-fuzzy 0.3.1 (2017). https://doi.org/10.5281/zenodo.1002946

  50. Osroosh, Y., Peters, R.T., Campbell, C.S., Zhang, Q.: Comparison of irrigation automation algorithms for drip-irrigated apple trees. Comput. Electron. Agric. 128, 87–99 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank the Research and Extension Department of Universidad Nacional de Colombia, Bogotá, for funding the institutional project entitled: Modeling Based on Agents for Precision Agriculture Applications in the National Call for Projects for research strengthening, Creation and Innovation of Universidad Nacional de Colombia 2016–2018. Pedro-F Cardenas expresses its gratitude to Colciencias for the doctorate study abroad scholarship 2007. Andres-F Jimenez expresses its gratitude to Crop, Soil and Environmental Sciences Department, Precision Agriculture, Auburn, Alabama, the Boyacá government for the doctorate scholarship - 2015 and also to the Universidad de los Llanos. We express our gratitude to the engineer Angel Rafael López Corredor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Fernando Jimenez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jimenez, A.F., Herrera, E.F., Ortiz, B.V., Ruiz, A., Cardenas, P.F. (2019). Inference System for Irrigation Scheduling with an Intelligent Agent. In: Corrales, J., Angelov, P., Iglesias, J. (eds) Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II. AACC 2018. Advances in Intelligent Systems and Computing, vol 893. Springer, Cham. https://doi.org/10.1007/978-3-030-04447-3_1

Download citation

Publish with us

Policies and ethics