Skip to main content

Navier–Stokes Transport Coefficients for Multicomponent Granular Gases. I. Theoretical Results

  • Chapter
  • First Online:
Granular Gaseous Flows

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

The Chapman–Enskog method is applied to solve the set of Enskog kinetic equations of a multicomponent mixture of smooth inelastic hard spheres. As with monocomponent systems, an analysis is performed to first-order in spatial gradients. The Navier–Stokes transport coefficients and the first-order contribution to the cooling rate are obtained in terms of the solution to a set of coupled linear integral equations. These equations are approximately solved by considering the leading terms in a Sonine polynomial expansion. Explicit forms of the relevant transport coefficients of the mixture are obtained in terms of concentrations, masses and sizes of the constituents of the mixture, solid volume fraction, and coefficients of restitution. The dependence of these coefficients on the parameter space of the system is amply illustrated in the case of a binary mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As in Chap. 2, in the following Latin indexes \((i,j,\ell , \ldots )\) will be used to refer to the different components of the mixture while Greek indexes \((\lambda ,\beta , \ldots )\) will be used to denote Cartesian coordinates.

  2. 2.

    Some misprints in Ref. [32] were found while the present chapter was written. The expressions displayed here are the corrected results.

References

  1. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular fluids. Ann. Rev. Fluid Mech. 32, 55–91 (2000)

    Google Scholar 

  2. Kudrolli, A.: Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209–247 (2004)

    Article  ADS  Google Scholar 

  3. Jenkins, J.T., Mancini, F.: Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1, 2050–2057 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  4. Arnarson, B., Willits, J.T.: Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids 10, 1324–1328 (1998)

    Article  ADS  Google Scholar 

  5. Willits, J.T., Arnarson, B.: Kinetic theory of a binary mixture of nearly elastic disks. Phys. Fluids 11, 3116–3122 (1999)

    Article  ADS  Google Scholar 

  6. Serero, D., Goldhirsch, I., Noskowicz, S.H., Tan, M.L.: Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554, 237–258 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  8. López de Haro, M., Cohen, E.G.D., Kincaid, J.: The Enskog theory for multicomponent mixtures. I. Linear transport theory. J. Chem. Phys. 78, 2746–2759 (1983)

    Article  ADS  Google Scholar 

  9. Zamankhan, Z.: Kinetic theory for multicomponent dense mixtures of slightly inelastic spherical particles. Phys. Rev. E 52, 4877–4891 (1995)

    Article  ADS  Google Scholar 

  10. Jenkins, J.T., Mancini, F.: Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic, circular disks. J. Appl. Mech. 54, 27–34 (1987)

    Article  ADS  Google Scholar 

  11. Huilin, L., Wenti, L., Rushan, B., Lidan, Y., Gidaspow, D.: Kinetic theory of fluidized binary granular mixtures with unequal granular temperature. Physica A 284, 265–276 (2000)

    Article  ADS  Google Scholar 

  12. Huilin, L., Gidaspow, D., Manger, E.: Kinetic theory of fluidized binary granular mixtures. Phys. Rev. E 64, 061301 (2001)

    Article  ADS  Google Scholar 

  13. Garzó, V., Dufty, J.W.: Hydrodynamics for a granular binary mixture at low density. Phys. Fluids. 14, 1476–1490 (2002)

    Article  ADS  Google Scholar 

  14. Garzó, V., Montanero, J.M., Dufty, J.W.: Mass and heat fluxes for a binary granular mixture at low density. Phys. Fluids 18, 083305 (2006)

    Article  ADS  Google Scholar 

  15. Garzó, V., Dufty, J.W., Hrenya, C.M.: Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport. Phys. Rev. E 76, 031303 (2007)

    Google Scholar 

  16. Garzó, V., Hrenya, C.M., Dufty, J.W.: Enskog theory for polydisperse granular mixtures. II. Sonine polynomial approximation. Phys. Rev. E 76, 031304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Garzó, V., Montanero, J.M.: Diffusion of impurities in a granular gas. Phys. Rev. E 69, 021301 (2004)

    Article  ADS  Google Scholar 

  18. Montanero, J.M., Garzó, V.: Shear viscosity for a heated granular binary mixture at low density. Phys. Rev. E 67, 021308 (2003)

    Article  ADS  Google Scholar 

  19. Garzó, V., Montanero, J.M.: Shear viscosity for a moderately dense granular binary mixture. Phys. Rev. E 68, 041302 (2003)

    Article  ADS  Google Scholar 

  20. Garzó, V., Montanero, J.M.: Navier-Stokes transport coefficients of \(d\)-dimensional granular binary mixtures at low-density. J. Stat. Phys. 129, 27–58 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Garzó, V., Vega Reyes, F.: Mass transport of impurities in a moderately dense granular gas. Phys. Rev. E 79, 041303 (2009)

    Article  ADS  Google Scholar 

  22. Noskowicz, S.H., Bar-Lev, O., Serero, D., Goldhirsch, I.: Computer-aided kinetic theory and granular gases. Europhys. Lett. 79, 60001 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Serero, D., Noskowicz, S.H., Tan, M.L., Goldhirsch, I.: Binary granular gas mixtures: theory, layering effects and some open questions. Eur. Phys. J. Spec. Top. 179, 221–247 (2009)

    Article  Google Scholar 

  24. Dahl, S.R., Hrenya, C.M., Garzó, V., Dufty, J.W.: Kinetic temperatures for a granular mixture. Phys. Rev. E 66, 041301 (2002)

    Article  ADS  Google Scholar 

  25. Rahaman, M.F., Naser, J., Witt, P.J.: An unequal granular temperature kinetic theory: description of granular flow with multiple particle classes. Powder Technol. 138, 82–92 (2003)

    Article  Google Scholar 

  26. Iddir, H., Arastoopour, H.: Modeling of multitype particle flow using the kinetic theory approach. AIChE J. 51, 1620–1632 (2005)

    Article  Google Scholar 

  27. van Beijeren, H., Ernst, M.H.: The non-linear Enskog-Boltzmann equation. Phys. Lett. A 43, 367–368 (1973)

    Article  ADS  Google Scholar 

  28. van Beijeren, H., Ernst, M.H.: The modified Enskog equation for mixtures. Physica A 70, 225–242 (1973)

    Google Scholar 

  29. Barajas, L., Garcia-Colín, L.S., Piña, E.: On the Enskog-Thorne theory for a binary mixture of dissimilar rigid spheres. J. Stat. Phys. 7, 161–183 (1973)

    Article  ADS  Google Scholar 

  30. de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. Dover, New York (1984)

    MATH  Google Scholar 

  31. Garzó, V., Vega Reyes, F., Montanero, J.M.: Modified Sonine approximation for granular binary mixtures. J. Fluid Mech. 623, 387–411 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. Murray, J.A., Garzó, V., Hrenya, C.M.: Enskog theory for polydisperse granular mixtures. III. Comparison of dense and dilute transport coefficients and equations of state for a binary mixture. Powder Technol. 220, 24–36 (2012)

    Article  Google Scholar 

  33. Garzó, V.: Thermal diffusion segregation in granular binary mixtures described by the Enskog equation. New J. Phys. 13, 055020 (2011)

    Article  ADS  Google Scholar 

  34. Garzó, V., Murray, J.A., Vega Reyes, F.: Diffusion transport coefficients for granular binary mixtures at low density: thermal diffusion segregation. Phys. Fluids 25, 043302 (2013)

    Article  ADS  Google Scholar 

  35. Brilliantov, N.V., Pöschel, T.: Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett. 74, 424–430 (2006)

    Article  ADS  Google Scholar 

  36. Serero, D., Noskowicz, S.H., Goldhirsch, I.: Exact results versus mean field solutions for binary granular gas mixtures. Granul. Matter 10, 37–46 (2007)

    Article  Google Scholar 

  37. Ferziger, J.H., Kaper, G.H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)

    Google Scholar 

  38. Santos, A.: A Concise Course on the Theory of Classical Liquids. Basics and Selected Topics. Lecture Notes in Physics, vol. 923. Springer, New York (2016)

    Google Scholar 

  39. Reed, T.M., Gubbins, K.E.: Applied Statistical Mechanics. MacGraw-Hill, New York (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Garzó .

Appendices

Appendix A

The explicit form of the transport coefficients associated with mass and heat fluxes requires knowledge of the quantities \(I_{ij\ell }\). These parameters are defined in terms of the functional derivative of the local pair distribution function \(\chi _{ij}\) with respect to the local partial densities \(n_\ell \) [15]:

$$\begin{aligned} I_{ij\ell }(\sigma _{ij};\left\{ n_{k}\right\} )=&\frac{2 n_{\ell }(\mathbf {r}_{1},t)}{\chi _{ij}\left( \sigma _{ij};\left\{ n_{k}\right\} \right) \sigma _{ij}}\int \text {d}\mathbf {r}' \left( \widehat{\varvec{\sigma }}_{ij}\cdot \mathbf {r}'\right) \nonumber \\&\times \left| \frac{\delta \chi _{ij}\left( -\frac{1}{2}{\varvec{\sigma }}_{ij},+\frac{1}{2}{\varvec{\sigma }}_{ij}\mid \left\{ n_{i}\right\} \right) }{\delta n_{\ell }(\mathbf {r}',t)}\right| _{\delta n=0}. \end{aligned}$$
(5.97)

These quantities are zero if \(i=j\); they are nonzero otherwise. As mentioned in the main text, they are chosen here to recover the results obtained for ordinary fluid mixtures [8], given the mathematical difficulties involved in their direct evaluation. Thus, the parameters \(I_{i \ell j}\) are defined through the relation [33]

$$\begin{aligned} \sum _{\ell =1}^2 n_\ell \sigma _{i\ell }^d \chi _{i\ell }\left( n_j \frac{\partial \ln \chi _{i\ell }}{\partial n_j}+I_{i\ell j}\right) =&\frac{d \varGamma \left( \frac{d}{2}\right) }{\pi ^{d/2}}\left[ \frac{n_j}{T}\left( \frac{\partial \mu _i}{\partial n_j}\right) _{T,n_{k\ne j}}-\delta _{ij}\right] \nonumber \\&-2n_j\chi _{ij}\sigma _{ij}^d, \end{aligned}$$
(5.98)

where \(\mu _i\) is the chemical potential of species i [30]. Since granular fluids lack a thermodynamic description (they are inherently out of equilibrium), the concept of chemical potential is questionable. Here, for practical purposes, the expression of \(\mu _i\) obtained for ordinary mixtures will be taken. Although this evaluation requires the use of thermodynamic relations that only hold for ordinary systems, it is expected that this approximation will be reliable for not too strong values of dissipation. This assertion must of course be supported by computer simulations.

In a binary mixture, the relevant nonzero parameters are \(I_{121}\) and \(I_{122}\). According to Eq. (5.98), they are defined as

$$\begin{aligned} I_{121}=&\frac{d \varGamma \left( \frac{d}{2}\right) }{\pi ^{d/2}Tn_2\sigma _{12}^d\chi _{12}}\left[ n_1\left( \frac{\partial \mu _1}{\partial n_1} \right) _{T,n_{2}}-T\right] \nonumber \\&-2\frac{n_1\sigma _1^d\chi _{11}}{n_2\sigma _{12}^d\chi _{12}}-\frac{n_1^2\sigma _1^d}{n_2\sigma _{12}^d\chi _{12}}\frac{\partial \chi _{11}}{\partial n_1} -\frac{n_1}{\chi _{12}}\frac{\partial \chi _{12}}{\partial n_1}, \end{aligned}$$
(5.99)
$$\begin{aligned} I_{122}=\frac{d \varGamma \left( \frac{d}{2}\right) }{\pi ^{d/2}T\sigma _{12}^d\chi _{12}} \left( \frac{\partial \mu _1}{\partial n_2} \right) _{T,n_{1}}-2- \frac{\sigma _1^d n_1}{\sigma _{12}^d\chi _{12}}\frac{\partial \chi _{11}}{\partial n_2} -\frac{n_2}{\chi _{12}}\frac{\partial \chi _{12}}{\partial n_2}. \end{aligned}$$
(5.100)

Note that for mechanically equivalent particles, \(I_{121}=I_{122}=0\), which is as expected since SET and RET lead to the same Navier–Stokes transport coefficients for a monocomponent gas [27, 28].

To determine \(I_{121}\) and \(I_{122}\) it remains to compute the derivatives \(\partial _{n_j}\chi _{ij}\) and \(\partial _{n_j}\mu _i\). In the case of hard disks (\(d=2\)) , a good approximation for the pair distribution function \(\chi _{ij}\) is given by Eq. (2.76), namely,

$$\begin{aligned} \chi _{ij}=\frac{1}{1-\phi }+\frac{9}{16}\frac{\phi }{(1-\phi )^2}\frac{\sigma _i\sigma _jM_1}{\sigma _{ij}M_2}, \end{aligned}$$
(5.101)

where \(\phi =\sum _i\; n_i\pi \sigma _i^2/4\) is the solid volume fraction for disks and we recall that

$$\begin{aligned} M_\ell =\sum _{s}\; x_s \sigma _s^\ell . \end{aligned}$$
(5.102)

The expression of the chemical potential \(\mu _i\) of the species i consistent with the approximation (5.101) is [38]

$$\begin{aligned} \frac{\mu _i}{T}= & {} \ln (\varXi _i^2n_i)-\ln (1-\phi )+\frac{M_1}{4M_2}\left[ \frac{9\phi }{1-\phi }+\ln (1-\phi )\right] \sigma _i \nonumber \\&-\frac{1}{8}\left[ \frac{M_1^2}{M_2^2}\frac{\phi (1-10\phi )}{(1-\phi )^2}- \frac{8}{M_2}\frac{\phi }{1-\phi }+\frac{M_1^2}{M_2^2}\ln (1-\phi )\right] \sigma _i^2, \end{aligned}$$
(5.103)

where \(\varXi _i(T)\) is the (constant) thermal de Broglie wavelength of species i [39]. In the case of hard spheres (\(d=3\)), the pair distribution function \(\chi _{ij}\) is approximated by Eq. (2.77), namely,

$$\begin{aligned} \chi _{ij}=\frac{1}{1-\phi }+\frac{3}{2}\frac{\phi }{(1-\phi )^2}\frac{\sigma _i\sigma _jM_2}{\sigma _{ij}M_3} +\frac{1}{2}\frac{\phi ^2}{(1-\phi )^3}\left( \frac{\sigma _i\sigma _jM_2}{\sigma _{ij}M_3}\right) ^2, \end{aligned}$$
(5.104)

where \(\phi =\sum _i\; n_i\pi \sigma _i^3/6\) is the solid volume fraction for spheres. The chemical potential consistent with Eq. (5.104) is [39]

$$\begin{aligned} \frac{\mu _i}{T}= & {} \ln (\varXi _i^3n_i)-\ln (1-\phi )+3\frac{M_2}{M_3}\frac{\phi }{1-\phi }\sigma _i +3\left[ \frac{M_2^2}{M_3^2}\frac{\phi }{(1-\phi )^2}+ \frac{M_1}{M_3}\frac{\phi }{1-\phi }\right. \nonumber \\&\left. +\frac{M_2^2}{M_3^2}\ln (1-\phi )\right] \sigma _i^2-\left[ \frac{M_2^3}{M_3^3}\frac{\phi (2-5\phi +\phi ^2)}{(1-\phi )^3}-3 \frac{M_1M_2}{M_3^2}\frac{\phi ^2}{(1-\phi )^2}\right. \nonumber \\&\left. -\frac{1}{M_3}\frac{\phi }{1-\phi } +2\frac{M_2^3}{M_3^3}\ln (1-\phi )\right] \sigma _i^3. \end{aligned}$$
(5.105)

These results permit us to compute the quantities \(I_{121}\) and \(I_{122}\) in terms of the parameters of the mixture.

Appendix B

The collisional transfer contributions \(D_{q,ij}^\text {c}\) and \(\kappa _\text {c}\) to the heat transport coefficients are given by [15, 16]

$$\begin{aligned} D_{q,ij}^{\text {c}}= & {} \sum _{\ell =1}^{N}\frac{1}{8}\left( 1+\alpha _{i\ell }\right) m_{i\ell }\sigma _{i\ell }^{d}\chi _{i\ell }\left\{ 2B_{4} \left( 1-\alpha _{i\ell }\right) \left( \mu _{i\ell }-\mu _{\ell \,i}\right) n_{i}\left[ \frac{2}{m_\ell } D_{q,\ell j}^{\text {k}}\right. \right. \nonumber \\&\left. +\,(d+2)\frac{T_i}{T^{2}}\frac{m_{j}n_{j}}{\rho m_{i}}D_{\ell j}\right] +\frac{24B_{2}}{d+2}n_{i}\left[ \frac{2 \mu _{\ell \,i}}{m_{\ell }} D_{q,\ell j}^{\text {k}}- (d+2)\left( 2\mu _{i \ell }-\mu _{\ell \,i}\right) \right. \nonumber \\&\left. \left. \times \,\frac{T_{i}}{T^{2} }\frac{m_{j}n_{j}}{\rho m_{i}}D_{\ell j}\right] -T^{-2}\sigma _{ij}C_{i \ell j}\right\} , \end{aligned}$$
(5.106)
$$\begin{aligned} \kappa _\text {c}= & {} \sum _{i=1}^{N}\sum _{j=1}^{N}\frac{1}{8}\left( 1+\alpha _{ij}\right) m_{ij}\sigma _{ij}^{d}\chi _{ij}\left\{ 2B_{4}\left( 1-\alpha _{ij}\right) \left( \mu _{ij}-\mu _{ji}\right) n_{i} \left[ \frac{2\lambda _{j}}{m_{j}}\right. \right. \nonumber \\&\left. +\,(d+2)\frac{\rho }{m_{j}T}\left( \frac{T_j}{m_j}+\frac{T_i}{m_i}\right) D_{j}^{T}\right] +\frac{24B_{2}}{d+2}n_{i}\left[ \frac{2\lambda _j}{m_i+m_{j}}+(d+2)\frac{\rho }{T m_j}\right. \nonumber \\&\left. \left. \times \, \left( \mu _{ji}\left( \frac{T_i}{m_i}+ \frac{T_j}{m_j}\right) - 2\frac{\mu _{ij}T_{i}}{m_{i}}\right) D_{j}^{T}\right] -T^{-1}\sigma _{ij}C_{ij}\right\} , \end{aligned}$$
(5.107)

where the coefficients \(B_k\) are defined by Eq. (1.177). The quantities \(C_{ij}\) and \(C_{i \ell j}\) are provided in terms of velocity integrals involving the zeroth-order distributions [16]. These quantities can be explicitly determined by considering the Maxwellian distributions (5.50). Their final forms can be written as

$$\begin{aligned} C_{ij}=-\frac{2\pi ^{(d-1)/2}}{d\varGamma \left( \frac{d}{2}\right) } n_{i}n_{j}\upsilon _{\text {th}}^{3} C_{ij}^*, \quad C_{i \ell j}=\frac{4\pi ^{(d-1)/2}}{d\varGamma \left( \frac{d}{2}\right) }n_in_\ell \upsilon _{\text {th}}^3C_{i\ell j}^*, \end{aligned}$$
(5.108)

where

$$\begin{aligned} C_{ij}^*= & {} (\theta _{i}+\theta _{j})^{-1/2}(\theta _{i}\theta _{j})^{-3/2}\left\{ 2\beta _{ij}^{2}+\theta _{i}\theta _{j}+(\theta _{i}+\theta _{j})\left[ (\theta _{i}+\theta _{j})\mu _{ij}\mu _{ji}\right. \right. \nonumber \\&\left. \left. +\beta _{ij}(1+\mu _{ji})\right] \right\} +\,\frac{3}{4}(1-\alpha _{ij})(\mu _{ji}-\mu _{ij})\left( \frac{\theta _{i}+\theta _{j}}{\theta _{i}\theta _{j}}\right) ^{3/2}\nonumber \\&\times \left[ \mu _{ji}+\beta _{ij}(\theta _{i}+\theta _{j})^{-1}\right] , \end{aligned}$$
(5.109)
$$\begin{aligned} C_{i \ell j}^*= & {} (\theta _i+\theta _\ell )^{-1/2}(\theta _i\theta _\ell )^{-3/2}\Big \{ \delta _{j\ell }\beta _{i\ell }(\theta _i+\theta _\ell ) -\frac{1}{2}\theta _i\theta _\ell \nonumber \\&\times \left[ 1+\frac{\mu _{\ell \,i}(\theta _i+\theta _\ell )-2 \beta _{i\ell }}{\theta _\ell }\right] \frac{\partial \ln \gamma _\ell }{\partial \ln n_j}\Big \}+\frac{1}{4}(1-\alpha _{i \ell })(\mu _{\ell \, i}-\mu _{i\ell })\nonumber \\&\times \left( \frac{\theta _i+\theta _\ell }{\theta _i\theta _\ell }\right) ^{3/2} \left( \delta _{j\ell } +\frac{3}{2}\frac{\theta _i}{\theta _i+\theta _\ell }\frac{\partial \ln \gamma _\ell }{\partial \ln n_j}\right) , \end{aligned}$$
(5.110)

where we recall that \(\beta _{ij}=\mu _{ij}\theta _j-\mu _{ji}\theta _i\).

The kinetic contributions \(D_{q,ij}^\text {k}\) and \(\kappa _\text {k}\) for a binary mixture (\(N=2\)) are now considered. They are defined by Eq. (5.72). To determine them, we must also evaluate the parameters \(\lambda _i\) and \(d_{q,ij}\). These parameters can be expressed in a more compact form by introducing their dimensionless expressions

$$\begin{aligned} d_{q,ij}^*=\frac{2}{d+2}\frac{(m_1+m_2)\nu '}{n}d_{q,ij}, \quad \lambda _{i}^*=\frac{2}{d+2}\frac{(m_1+m_2)\nu '}{n T}\lambda _{i}. \end{aligned}$$
(5.111)

The coefficients \(\lambda _i^*\) are [32]

$$\begin{aligned} \lambda _1^*=\frac{(\psi _{22}^*-2\zeta _0^*)\overline{\lambda }_1^*-\psi _{12}^*\overline{\lambda }_2^*}{4\zeta _0^{*2}-2(\psi _{11}^*+\psi _{22}^*)\zeta _0^*-\psi _{12}^*\psi _{21}^*+\psi _{11}^*\psi _{22}^*}, \end{aligned}$$
(5.112)
$$\begin{aligned} \lambda _2^*=\frac{(\psi _{11}^*-2\zeta _0^*)\overline{\lambda }_2^*-\psi _{21}^*\overline{\lambda }_1^*}{4\zeta _0^{*2}-2(\psi _{11}^*+\psi _{22}^*)\zeta _0^*-\psi _{12}^*\psi _{21}^*+\psi _{11}^*\psi _{22}^*}, \end{aligned}$$
(5.113)

where \(\zeta _0^*= \zeta ^{(0)}/\nu '\) can be easily obtained from Eq. (5.51) and

$$\begin{aligned} \overline{\lambda }_i^*= & {} \frac{m_1+m_2}{m_i}x_i\gamma _i^2\sum _{j=1}^2\left( \delta _{ij}-\frac{\omega _{ij}^*- \zeta _0^*\delta _{ij}}{x_j\gamma _j}D_j^{*T}+\frac{\pi ^{d/2}}{d(d+2)\varGamma \left( \frac{d}{2}\right) } n\sigma _{ij}^d \mu _{ij}x_j \chi _{ij}\right. \nonumber \\&\times \left. \frac{\gamma _j (1+\alpha _{ij})A_{ij}}{\gamma _i}\right) . \end{aligned}$$
(5.114)

Here, \(A_{ij}\) is defined as

$$\begin{aligned} A_{ij}= & {} (d+2)(\mu _{ij}^{2}-1)+(2d-5-9\alpha _{ij})\mu _{ij}\mu _{ji}+\mu _{ji}^{2} \nonumber \\\times & {} (d-1+3\alpha _{ij}+6\alpha _{ij}^{2}) +\frac{6\mu _{ji}^2(1+\alpha _{ij})^{2}\theta _{i}}{\theta _j}, \end{aligned}$$
(5.115)

and the reduced collision frequencies \(\omega _{ij}^*\) and \(\psi _{ij}^*\) are given by

$$\begin{aligned} \omega _{11}^*= & {} \frac{\pi ^{(d-1)/2}}{\varGamma \left( \frac{d}{2}\right) }\frac{2}{d\sqrt{2}} \left( \frac{\sigma _1}{\sigma _{12}}\right) ^{d-1}x_1 \chi _{11} \theta _1^{-1/2}(1-\alpha _{11}^2)\nonumber \\&+\frac{\pi ^{(d-1)/2}}{\varGamma \left( \frac{d}{2}\right) }\frac{2}{d(d+2)} x_2\chi _{12}\mu _{21}(1+\alpha _{12})\nonumber \\&\times (\theta _1+\theta _2)^{-1/2}\theta _1^{1/2} \theta _2^{-3/2} F, \end{aligned}$$
(5.116)
$$\begin{aligned} \omega _{12}^*=\frac{\pi ^{(d-1)/2}}{\varGamma \left( \frac{d}{2}\right) }\frac{2}{d(d+2)} x_2\chi _{12}\mu _{21}(1+\alpha _{12})(\theta _1+\theta _2)^{-1/2}\theta _1^{1/2} \theta _2^{-3/2}G, \end{aligned}$$
(5.117)
$$\begin{aligned} \psi _{11}^*= & {} \frac{\pi ^{(d-1)/2}}{\varGamma \left( \frac{d}{2}\right) } \frac{8}{d(d+2)}\left( \frac{\sigma _1}{\sigma _{12}}\right) ^{d-1} x_1 \chi _{11}(2\theta _1)^{-1/2} (1+\alpha _{11})\left[ \frac{d-1}{2}\right. \nonumber \\&\left. +\frac{3}{16}(d+8)(1-\alpha _{11})\right] +\frac{\pi ^{(d-1)/2}}{\varGamma \left( \frac{d}{2}\right) } \frac{1}{d(d+2)}x_2\chi _{12}\mu _{21}(1+\alpha _{12})\nonumber \\&\times \left( \frac{\theta _1}{\theta _2(\theta _1+\theta _2)}\right) ^{3/2}\left[ H-(d+2)\frac{\theta _1+\theta _2}{\theta _1}F\right] , \end{aligned}$$
(5.118)
$$\begin{aligned} \psi _{12}^*=&-\frac{\pi ^{(d-1)/2}}{\varGamma \left( \frac{d}{2}\right) } \frac{1}{d(d+2)}x_1\chi _{12}\mu _{12}(1+\alpha _{12})\left( \frac{\theta _2}{\theta _1(\theta _1+\theta _2)}\right) ^{3/2}\nonumber \\&\times \left[ I+(d+2)\frac{\theta _1+\theta _2}{\theta _2}G\right] . \end{aligned}$$
(5.119)

In the above equations, the following quantities have been introduced

$$\begin{aligned} F= & {} (d+2)(2\beta _{12}+\theta _2)+\mu _{21}(\theta _1+\theta _2)\bigg \{(d+2)(1-\alpha _{12}) -[(11+d)\alpha _{12}\nonumber \\&-5d-7]\times \,\beta _{12}\theta _1^{-1}\bigg \} +3(d+3)\beta _{12}^2\theta _1^{-1}+2\mu _{21}^2\nonumber \\&\times \left( 2\alpha _{12}^{2}-\frac{d+3}{2}\alpha _{12}+d+1\right) \theta _1^{-1}(\theta _1+\theta _2)^2\nonumber \\&-\, (d+2)\theta _2\theta _1^{-1}(\theta _1+\theta _2), \end{aligned}$$
(5.120)
$$\begin{aligned} G= & {} (d+2)(2\beta _{12}-\theta _1)+\mu _{21}(\theta _1+\theta _2)\bigg \{(d+2)(1-\alpha _{12}) +[(11+d)\alpha _{12}\nonumber \\&-5d-7] \times \,\beta _{12}\theta _2^{-1}\bigg \} -3(d+3)\beta _{12}^2\theta _2^{-1}-2\mu _{21}^2\nonumber \\&\times \left( 2\alpha _{12}^{2}-\frac{d+3}{2}\alpha _{12}+d+1\right) \theta _2^{-1}(\theta _1+\theta _2)^2\nonumber \\&+\, (d+2)(\theta _1+\theta _2), \end{aligned}$$
(5.121)
$$\begin{aligned} H= & {} 2\mu _{21}^2\theta _1^{-2}(\theta _1+\theta _2)^2 \left( 2\alpha _{12}^{2}-\frac{d+3}{2}\alpha _{12}+d+1\right) \big [(d+2)\theta _1+(d+5)\theta _2\big ]\nonumber \\&-\,\mu _{21}(\theta _1+\theta _2) \bigg \{\beta _{12}\theta _1^{-2}[(d+2)\theta _1+(d+5)\theta _2][(11+d)\alpha _{12} -5d-7]\nonumber \\&-\,\theta _2\theta _1^{-1}[20+d(15-7\alpha _{12})+d^2(1-\alpha _{12})-28\alpha _{12}] -(d+2)^2(1-\alpha _{12})\bigg \} \nonumber \\&+\,3(d+3)\beta _{12}^2\theta _1^{-2}[(d+2)\theta _1+(d+5)\theta _2]+ 2\beta _{12}\theta _1^{-1} \left[ (d+2)^2\theta _1\right. \nonumber \\&\left. +\,(24+11d+d^2)\theta _2\right] +(d+2)\theta _2\theta _1^{-1} [(d+8)\theta _1+(d+3)\theta _2]\nonumber \\&-\,(d+2)(\theta _1+\theta _2)\theta _1^{-2}\theta _2 [(d+2)\theta _1+(d+3)\theta _2], \end{aligned}$$
(5.122)
$$\begin{aligned} I= & {} 2\mu _{21}^2\theta _2^{-2}(\theta _1+\theta _2)^2 \left( 2\alpha _{12}^{2}-\frac{d+3}{2}\alpha _{12}+d+1\right) \big [(d+5)\theta _1+(d+2)\theta _2\big ]\nonumber \\&-\,\mu _{21}(\theta _1+\theta _2) \bigg \{\beta _{12}\theta _2^{-2}[(d+5)\theta _1+(d+2)\theta _2][(11+d)\alpha _{12} -5d-7]\nonumber \\&+\,\theta _1\theta _2^{-1}[20+d(15-7\alpha _{12})+d^2(1-\alpha _{12})-28\alpha _{12}] +(d+2)^2(1-\alpha _{12})\bigg \} \nonumber \\&+\,3(d+3)\beta _{12}^2\theta _2^{-2}[(d+5)\theta _1+(d+2)\theta _2]- 2\beta _{12}\theta _2^{-1}\big [(24+11d+d^2)\theta _1 \nonumber \\&+\,(d+2)^2\theta _2\big ]+(d+2)\theta _1\theta _2^{-1} [(d+3)\theta _1+(d+8)\theta _2]\nonumber \\&-\,(d+2)(\theta _1+\theta _2)\theta _2^{-1} [(d+3)\theta _1+(d+2)\theta _2]. \end{aligned}$$
(5.123)

The expressions for \(\omega _{22}^*\), \(\omega _{21}^*\), \(\psi _{22}^*\), and \(\psi _{21}^*\) can be easily obtained from Eqs. (5.116)–(5.119) by interchanging \(1\leftrightarrow 2\). With these results the (scaled) kinetic coefficient

$$\begin{aligned} \kappa _\text {k}^{*}= \frac{2}{d+2}\frac{(m_1+m_2)\nu '}{n T}\kappa _\text {k} \end{aligned}$$
(5.124)

can be finally written as

$$\begin{aligned} \kappa _\text {k}^{*}=\frac{\overline{\lambda }_1^*(\psi _{22}^*-2\zeta _0^*-\psi _{21}^*)+ \overline{\lambda }_2^*(\psi _{11}^*-2\zeta _0^*-\psi _{12}^*)}{4\zeta _0^{*2}-2(\psi _{11}^*+\psi _{22}^*)\zeta _0^*-\psi _{12}^*\psi _{21}^*+\psi _{11}^*\psi _{22}^*} +\left( \frac{\gamma _1}{\mu _{12}}-\frac{\gamma _2}{\mu _{21}}\right) D_1^{T*}, \end{aligned}$$
(5.125)

where \(D_1^{T*}= (\rho \nu '/n T)D_1^T\) and use has been made of Eqs. (5.112) and (5.113).

The (reduced) coefficients \(d_{q,ij}^*\) are now considered. In a binary mixture, the relevant coefficients are the set \(\left\{ d_{q,11}^*, d_{q,12}^*, d_{q,22}^*, d_{q,21}^*\right\} \). The explicit expressions of \(d_{q,11}^*\) and \(d_{q,12}^*\) are [32]

$$\begin{aligned} d_{q,11}^*=\frac{\overline{d}_{q,21}^*\psi _{12}^*-\overline{d}_{q,11}^*(\psi _{22}^*-\frac{3}{2}\zeta _0^*)}{\psi _{12}^*\psi _{21}^*+(\psi _{11}^*-\frac{3}{2}\zeta _0^*)(\frac{3}{2}\zeta _0^*-\psi _{22}^*)}, \end{aligned}$$
(5.126)
$$\begin{aligned} d_{q,12}^*=\frac{\overline{d}_{q,22}^*\psi _{12}^*-\overline{d}_{q,12}^*(\psi _{22}^*-\frac{3}{2}\zeta _0^*)}{\psi _{12}^*\psi _{21}^*+(\psi _{11}^*-\frac{3}{2}\zeta _0^*)(\frac{3}{2}\zeta _0^*-\psi _{22}^*)}, \end{aligned}$$
(5.127)

where the (dimensionless) coefficients \(\overline{d}_{q,ij}^*\) are given by

$$\begin{aligned} \overline{d}_{q,ij}^*= & {} \frac{m_1+m_2}{m_i}x_i\gamma _in_j\frac{\partial \gamma _i}{\partial n_j}- \frac{m_1+m_2}{m_i}x_ix_j\gamma _i^2\sum _{\ell =1}^2\frac{\omega _{i\ell }^*- \zeta _0^*\delta _{i\ell }}{x_\ell \gamma _\ell }D_{\ell j}^{*} +\frac{n_j}{\nu '}\frac{\partial \zeta ^{(0)}}{\partial n_j}\lambda _i^* \nonumber \\&+\,\frac{\pi ^{d/2}}{d(d+2)\varGamma \left( \frac{d}{2}\right) } \frac{m_1+m_2}{m_i}x_i\gamma _i^2n \sum _{\ell =1}^2 \mu _{\ell \, i}\;x_\ell \;\sigma _{i\ell }^d\;\chi _{i\ell }(1+\alpha _{i\ell }) \nonumber \\&\times \, \left\{ \left[ \delta _{j\ell }+\frac{1}{2} \left( n_j\frac{\partial \ln \chi _{i\ell }}{\partial n_j}+I_{i\ell j}\right) \right] B_{i\ell }+ \frac{\theta _i}{\theta _{\ell }}n_j\frac{\partial \ln \gamma _\ell }{\partial n_j}A_{i\ell }\right\} . \end{aligned}$$
(5.128)

In Eq. (5.127), \(A_{ij}\) is defined by Eq. (5.115) while in Eq. (5.128) \(B_{ij}\) is

$$\begin{aligned} B_{ij}= & {} (d+8)\mu _{ij}^{2}+(7+2d-9\alpha _{ij})\mu _{ij}\mu _{ji}+(2+d+3\alpha _{ij}^{2}-3\alpha _{ij})\mu _{ji}^{2}\nonumber \\&+\,3\mu _{ji}^{2}(1+\alpha _{ij})^{2}\frac{\theta _{i}^2}{\theta _j^2}+\left[ (d+2)\mu _{ij}^{2}+(2d-5-9\alpha _{ij})\mu _{ij}\mu _{ji}\right. \nonumber \\&\left. +\,(d-1+3\alpha _{ij}+6\alpha _{ij}^{2})\mu _{ji}^{2}\right] \frac{\theta _{i}}{\theta _j}-(d+2)\frac{\theta _i+\theta _j}{\theta _j}. \end{aligned}$$
(5.129)

The expressions of the coefficients \(d_{q,22}^*\) and \(d_{q,21}^*\) can be derived from Eqs. (5.126) and (5.127), respectively, by interchanging \(1\leftrightarrow 2\). With these results the kinetic coefficients \(D_{q,ij}\) can be obtained from the second relation of Eq. (5.72).

The reduced forms of the collisional contributions to \(\kappa \) and \(D_{q,ij}\) can be determined from Eqs. (5.106) and (5.107), respectively. In the case of a binary mixture, the expressions of \(\kappa _\text {c}^{*}= (2/(d+2))[(m_1+m_2)\nu '/nT]\kappa _\text {c}\) and \(D_{q,ij}^{c*}= (2/(d+2))[(m_1+m_2)\nu '/n]D_{q,ij}^\text {c}\) are

$$\begin{aligned} \kappa _\text {c}^{*}= & {} \frac{3}{2}\frac{\pi ^{d/2}}{d(d+2)\varGamma \left( \frac{d}{2}\right) }n^* \sum _{i=1}^2\sum _{j=1}^2 x_i\left( \frac{\sigma _{ij}}{\sigma _{12}}\right) ^d\chi _{ij}\mu _{ij}(1+\alpha _{ij})\Bigg \{\bigg [(1-\alpha _{ij})\mu _{ij} \nonumber \\&+\,(3+\alpha _{ij}) \mu _{ji}\bigg ]\lambda _{j}^* +(m_1+m_2)D_j^{T*}\bigg [\frac{\gamma _j}{m_j}\bigg ((1-\alpha _{ij})\mu _{ij}+(3+\alpha _{ij})\mu _{ji}\bigg ) \nonumber \\&+\,\frac{\gamma _i}{m_i}\bigg ((3+\alpha _{ij})\mu _{ji}-(7+\alpha _{ij})\mu _{ij}\bigg )\bigg ]\nonumber \\&+\frac{16}{3\sqrt{\pi }} \frac{x_jm_j}{m_1+m_2}n^*\left( \frac{\sigma _{ij}}{\sigma _{12}}\right) C_{ij}^*\Bigg \}, \end{aligned}$$
(5.130)
$$\begin{aligned} D_{q,ij}^{c*}= & {} \frac{3}{2}\frac{\pi ^{d/2}}{d(d+2)\varGamma \left( \frac{d}{2}\right) }x_i n^*\sum _{\ell =1}^2 \left( \frac{\sigma _{i\ell }}{\sigma _{12}}\right) ^d\chi _{i\ell }\mu _{i\ell }(1+\alpha _{i\ell }) \Bigg \{\bigg [(1-\alpha _{i\ell })\mu _{i\ell } \nonumber \\&+\,(3+\alpha _{i\ell })\mu _{\ell \,i}\bigg ] d_{q,\ell j}^* +(m_1+m_2)x_jD_{\ell j}^*\bigg [\frac{\gamma _\ell }{m_\ell }\bigg ((1-\alpha _{i\ell })\mu _{i\ell } +(3+\alpha _{i\ell })\mu _{\ell \,i}\bigg ) \nonumber \\&+\,\frac{\gamma _i}{m_i}\bigg ((3+\alpha _{i\ell })\mu _{\ell \,i} -(7+\alpha _{i\ell })\mu _{i\ell }\bigg )\bigg ] -\frac{32}{3\sqrt{\pi }}\frac{x_\ell m_\ell }{m_1+m_2}n^*\left( \frac{\sigma _{i\ell }}{\sigma _{12}}\right) C_{i\ell j}^*\Bigg \},\nonumber \\ \end{aligned}$$
(5.131)

where \(n^*= n\sigma _{12}^d\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garzó, V. (2019). Navier–Stokes Transport Coefficients for Multicomponent Granular Gases. I. Theoretical Results. In: Granular Gaseous Flows. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-030-04444-2_5

Download citation

Publish with us

Policies and ethics