Skip to main content

Navier–Stokes Transport Coefficients for Monocomponent Granular Gases. I. Theoretical Results

  • Chapter
  • First Online:
  • 549 Accesses

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

A normal solution to the revised Enskog kinetic theory of smooth monocomponent granular gases is obtained via the Chapman–Enskog method for states close to the local homogeneous cooling state. The analysis is performed to first-order in spatial gradients, allowing the identification of Navier–Stokes transport coefficients associated with heat and momentum fluxes along with the first-order contribution to the cooling rate. The transport coefficients are determined from the solution to a set of coupled linear integral equations analogous to those for elastic collisions. These integral equations are solved by using different approximate methods that yield explicit expressions for the transport coefficients in terms of the coefficient of restitution and the solid volume fraction. Finally, the results obtained from the Chapman–Enskog method are compared against those derived from different approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In standard textbooks [11], a factor \(\varepsilon ^{-1}\) is usually assigned to the Enskog collision operator \(J_\text {E}\), hence the operators \(\partial _t\) and \(\nabla \) are formally of order \(\varepsilon ^0\). Here, the other scheme has been chosen for the sake of convenience. The results are, of course, completely equivalent in both schemes.

  2. 2.

    Einstein summation convention over repeated indices will be assumed across this book.

  3. 3.

    Note that the cooling rate \(\zeta ^{(0)}\) has been reduced here in a different way from that in Chap. 2.

References

  1. Jenkins, J.T., Savage, S.B.: A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187–202 (1983)

    Article  ADS  Google Scholar 

  2. Lun, C.K.K., Savage, S.B., Jeffrey, D.J., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223–256 (1984)

    Article  ADS  Google Scholar 

  3. Jenkins, J.T., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3493 (1985)

    Article  ADS  Google Scholar 

  4. Jenkins, J.T., Richman, M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal. 87, 355–377 (1985)

    Article  MathSciNet  Google Scholar 

  5. Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282, 75–114 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Kadanoff, L.P.: Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435–444 (1999)

    Article  ADS  Google Scholar 

  7. Goldhirsch, I.: Scales and kinetics of granular flows. Chaos 9, 659–671 (1999)

    Article  ADS  Google Scholar 

  8. Goldhirsch, I., Tan, M.L., Zanetti, G.: A molecular dynamical study of granular fluids I: The unforced granular gas in two dimensions. J. Sci. Comput. 8, 1–40 (1993)

    Article  Google Scholar 

  9. Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Puglisi, A.: Transport and Fluctuations in Granular Fluids. From Boltzmann Equation to Hydrodynamics, Diffusion and Motor Effects. Springer, Heidelberg (2015)

    Google Scholar 

  11. Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  12. Ferziger, J.H., Kaper, G.H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)

    Google Scholar 

  13. Scharf, G.: Functional-analytic discussion of the linearized Boltzmann. Helv. Phys. Acta 40, 929–945 (1967)

    MathSciNet  MATH  Google Scholar 

  14. Scharf, G.: Normal solutions of the linearized Boltzmann equation. Helv. Phys. Acta 42, 5–22 (1969)

    MathSciNet  MATH  Google Scholar 

  15. Résibois, P., de Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)

    MATH  Google Scholar 

  16. McLennan, J.A.: Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey (1989)

    Google Scholar 

  17. Dufty, J.W., Brey, J.J.: Hydrodynamic modes for granular gases. Phys. Rev. E 68, 030302(R) (2003)

    Article  ADS  Google Scholar 

  18. Brey, J.J., Dufty, J.W.: Hydrodynamic modes for a granular gas from kinetic theory. Phys. Rev. E 72, 011303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  20. Tan, M.L., Goldhirsch, I.: Rapid granular flows as mesoscopic systems. Phys. Rev. Lett. 81, 3022–3025 (1998)

    Article  ADS  Google Scholar 

  21. Dufty, J.W., Brey, J.J.: Comment on “Rapid granular flows as mesoscopic systems”. Phys. Rev. Lett. 82, 4566 (1999)

    Article  ADS  Google Scholar 

  22. Garzó, V., Santos, A.: Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer Academic Publishers, Dordrecht (2003)

    Book  Google Scholar 

  23. Dorfman, J.R., van Beijeren, H.: The kinetic theory of gases. In: Berne, B.J. (ed.) Statistical Mechanics. Part B: Time-Dependent Processes, pp. 65–179. Plenum, New York (1977)

    Google Scholar 

  24. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  Google Scholar 

  25. Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A.: Hydrodynamics for granular flows at low density. Phys. Rev. E 58, 4638–4653 (1998)

    Article  ADS  Google Scholar 

  26. Goldhirsch, I., Sela, N.: Origin of normal stress differences in rapid granular flows. Phys. Rev. E 54, 4458–4461 (1996)

    Article  ADS  Google Scholar 

  27. Sela, N., Goldhirsch, I., Noskowicz, S.H.: Kinetic theoretical study of a simply sheared two-dimensional granular gas to Burnett order. Phys. Fluids 8, 2337–2353 (1996)

    Article  ADS  Google Scholar 

  28. Sela, N., Goldhirsch, I.: Hydrodynamic equations for rapid flows of smooth inelastic spheres to Burnett order. J. Fluid Mech. 361, 41–74 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  29. Goldhirsch, I., Noskowicz, S.H., Bar-Lev, O.: Theory of granular gases: some recent results and some open problems. J. Phys.: Condens. Matter 17, S2591–S2608 (2005)

    ADS  Google Scholar 

  30. Garzó, V., Dufty, J.W.: Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895–5911 (1999)

    Article  ADS  Google Scholar 

  31. Lutsko, J.F.: Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E 72, 021306 (2005)

    Article  ADS  Google Scholar 

  32. Margeneau, H., Murphy, G.M.: The Mathematics of Physics and Chemistry. Krieger, Huntington, N.Y. (1956)

    Google Scholar 

  33. de Groot, S.R., van Leeuwen, W.A., van Weert, C.G.: Relativistic Kinetic Theory: Principles and Applications. North-Holland, Amsterdam (1980)

    Google Scholar 

  34. Cercignani, C., Kremer, G.: The Relativistic Boltzmann Equation: Theory and Applications. Birkhäusser, Berlin (2002)

    Book  Google Scholar 

  35. Pérez-Fuentes, C., Garzó, V.: Influence of a drag force on linear transport in low-density gases. Stability analysis. Physica A 410, 428–438 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  36. Brilliantov, N., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  37. Garzó, V.: Grad’s moment method for a granular fluid at moderate densities: Navier-Stokes transport coefficients. Phys. Fluids 25, 043301 (2013)

    Article  ADS  Google Scholar 

  38. Brilliantov, N.V., Pöschel, T.: Hydrodynamics and transport coefficients for dilute granular gases. Phys. Rev. E 67, 061304 (2003)

    Article  ADS  Google Scholar 

  39. Brey, J.J., Cubero, D.: Hydrodynamic transport coefficients of granular gases. In: Pöschel, T., Luding, S. (eds.) Granular Gases. Lectures Notes in Physics, vol. 564, pp. 59–78. Springer (2001)

    Google Scholar 

  40. Brey, J.J., Dufty, J.W., Santos, A.: Kinetic models for granular flow. J. Stat. Phys. 97, 281–322 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  41. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511–525 (1954)

    Article  ADS  Google Scholar 

  42. Welander, P.: On the temperature jump in a rarefied gas. Arkiv. Fysik. 7, 507–553 (1954)

    MathSciNet  MATH  Google Scholar 

  43. Brey, J.J., Ruiz-Montero, M.J., Cubero, D.: On the validity of linear hydrodynamics for low-density granular flows described by the Boltzmann equation. Europhys. Lett. 48, 359–364 (1999)

    Article  ADS  Google Scholar 

  44. Brey, J.J., Ruiz-Montero, M.J.: Simulation study of the Green-Kubo relations for dilute granular gases. Phys. Rev. E 70, 051301 (2004)

    Article  ADS  Google Scholar 

  45. Montanero, J.M., Santos, A., Garzó, V.: DSMC evaluation of the Navier–Stokes shear viscosity of a granular fluid. In: Capitelli, M. (ed.) 24th International Symposium on Rarefied Gas Dynamics, vol. 762, pp. 797–802. AIP Conference Proceedings (2005)

    Google Scholar 

  46. Brey, J.J., Ruiz-Montero, M.J., Maynar, P., García de Soria, M.I.: Hydrodynamic modes, Green-Kubo relations, and velocity correlations in dilute granular gases. J. Phys.: Condens. Matter 17, S2489–S2502 (2005)

    ADS  Google Scholar 

  47. Montanero, J.M., Santos, A., Garzó, V.: First-order Chapman-Enskog velocity distribution function in a granular gas. Physica A 376, 75–93 (2007)

    Article  ADS  Google Scholar 

  48. Garzó, V., Montanero, J.M.: Diffusion of impurities in a granular gas. Phys. Rev. E 69, 021301 (2004)

    Article  ADS  Google Scholar 

  49. Garzó, V., Santos, A., Montanero, J.M.: Modified Sonine approximation for the Navier-Stokes transport coefficients of a granular gas. Physica A 376, 94–107 (2007)

    Article  ADS  Google Scholar 

  50. Noskowicz, S.H., Bar-Lev, O., Serero, D., Goldhirsch, I.: Computer-aided kinetic theory and granular gases. Europhys. Lett. 79, 60001 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  51. Brilliantov, N.V., Pöschel, T.: Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett. 74, 424–430 (2006)

    Article  ADS  Google Scholar 

  52. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, New York (1999)

    Book  Google Scholar 

  53. Lun, C.K.K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539–559 (1991)

    Article  ADS  Google Scholar 

  54. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MathSciNet  Google Scholar 

  55. Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Berlin (2005)

    Book  Google Scholar 

  56. Kremer, G.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer, Berlin (2010)

    Book  Google Scholar 

  57. Torrilhon, M.: Modeling nonequilibrium gas flow based on moment equations. Ann. Rev. Fluid Mech. 48, 429–458 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  58. Gupta, V.K., Shukla, P., Torrilhon, M.: Higher-order moment theories for dilute granular gases of smooth hard spheres. J. Fluid Mech. 836, 451–501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  59. Carnahan, N.F., Starling, K.E.: Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635–636 (1969)

    Article  ADS  Google Scholar 

  60. Kremer, G.M., Marques Jr., W.: Fourteen moment theory for granular gases. Kinet. Relat. Models 4, 317–331 (2011)

    Article  MathSciNet  Google Scholar 

  61. Risso, D., Cordero, P.: Dynamics of rarefied granular gases. Phys. Rev. E 65, 021304 (2002)

    Article  ADS  Google Scholar 

  62. Bisi, M., Spiga, G., Toscani, G.: Grad’s equations and hydrodynamics for weakly inelastic granular gases. Phys. Fluids 16, 4235–4247 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  63. Saha, S., Alam, M.: Non-Newtonian stress, collisional dissipation and heat flux in the shear flow of inelastic disks: a reduction via Grad’s moment method. J. Fluid Mech. 757, 251–296 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  64. Brilliantov, N.V., Pöschel, T.: Self-diffusion in granular gases. Phys. Rev. E 61, 1716–1721 (2000)

    Article  ADS  Google Scholar 

  65. Goldhirsch, I., van Noije, T.P.C.: Green-Kubo relations for granular fluids. Phys. Rev. E 61, 3241–3244 (2000)

    Article  ADS  Google Scholar 

  66. Dufty, J.W.: Statistical mechanics, kinetic theory, and hydrodynamics for rapid granular flow. J. Phys: Condens. Matter 12, A47–A56 (2000)

    ADS  Google Scholar 

  67. Dufty, J.W., Garzó, V.: Mobility and diffusion in granular fluids. J. Stat. Phys. 105, 723–744 (2001)

    Article  MathSciNet  Google Scholar 

  68. Dufty, J.W., Brey, J.J., Lutsko, J.F.: Diffusion in a granular fluid. I. Theory. Phys. Rev. E 65, 051303 (2002)

    Article  ADS  Google Scholar 

  69. Dufty, J.W., Baskaran, A., Brey, J.J.: Linear response and hydrodynamics for granular fluids. Phys. Rev. E 77, 031310 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  70. Baskaran, A., Dufty, J.W., Brey, J.J.: Transport coefficients for the hard-sphere granular fluid. Phys. Rev. E 77, 031311 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  71. Baskaran, A., Dufty, J.W., Brey, J.J.: Kinetic theory of response functions for the hard sphere granular fluid. J. Stat. Mech. P12002 (2007)

    Google Scholar 

  72. Dufty, J.W., Brey, J.J.: Green-Kubo expressions for a granular gas. J. Stat. Phys. 109, 433–448 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  73. Lutsko, J.F., Brey, J.J., Dufty, J.W.: Diffusion in a granular fluid. II. Simulation. Phys. Rev. E 65, 051304 (2002)

    Article  ADS  Google Scholar 

  74. Kumaran, V.: Velocity autocorrelations and viscosity renormalization in sheared granular flows. Phys. Rev. Lett. 96, 258002 (2006)

    Article  ADS  Google Scholar 

  75. Kumaran, V.: Dynamics of a dilute sheared inelastic fluid. I. Hydrodynamic modes and velocity correlation functions. Phys. Rev. E 79, 011301 (2009)

    Article  ADS  Google Scholar 

  76. Otsuki, M., Hayakawa, H.: Long-time tails for sheared fluids. J. Stat. Mech. L08003 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Garzó .

Appendix A

Appendix A

Some technical details concerning evaluation of some of the collision integrals appearing in the chapter are provided in this Appendix. First, we consider the integral

$$\begin{aligned} \int \; \mathrm {d}\mathbf{V}\; R_{ij}(\mathbf{V}) \mathcal {K}_i\left[ \frac{\partial f^{(0)}}{\partial V_j} \right] . \end{aligned}$$
(3.121)

This integral is involved in the determination of the kinetic contribution \(\eta _\text {k}\) to the shear viscosity coefficient. According to the definition (3.27) of the operator \(\mathcal {K}_i\), the integral (3.121) is

$$\begin{aligned} \int \; \mathrm {d}\mathbf {V}\; R_{ij}(\mathbf {V}) \mathcal {K}_i\left[ \frac{\partial f^{(0)}}{\partial V_j}\right]= & {} \sigma ^{d}\chi \int \mathrm {d}\mathbf {V}_{1}\int \mathrm {d}\mathbf {V}_{2}\;R_{ij}(\mathbf {V}_1)\; \int \mathrm {d}\widehat{\varvec{\sigma }}\Theta (\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12})(\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})\widehat{\sigma }_i\nonumber \\&\times \left[ \alpha ^{-2}f^{(0)}(\mathbf {V} _{1}'')\frac{\partial f^{(0)}(\mathbf {V}_2'')}{\partial V_{2j}''} +f^{(0)}(\mathbf {V}_{1})\frac{\partial f^{(0)}(\mathbf {V}_2)}{\partial V_{2j}}\right] . \nonumber \\ \end{aligned}$$
(3.122)

As we saw in previous chapters, a simpler form of this integral is obtained by changing variables to integrate over \(\mathbf {V}_1''\) and \(\mathbf {V}_2''\) instead of \(\mathbf {V}_1\) and \(\mathbf {V}_2\) in the first term of Eq. (3.122). According to the relations (1.10) and (1.11), the Jacobian of the transformation is \(\alpha \) and \(\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12}=-\alpha \widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12}''\). Also, \(\mathbf {V}_1(\mathbf {V}_1'',\mathbf {V}_2'')= \mathbf {V}_1'=\mathbf {V}_1-\frac{1}{2}(1+\alpha )(\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12})\widehat{\varvec{\sigma }}\). The integral (3.122) then becomes

$$\begin{aligned} \int \mathrm {d}\mathbf {V} R_{ij}(\mathbf {V}) \mathcal{K}_i \left[ \frac{\partial f^{(0)}}{\partial V_j}\right]= & {} -\chi \sigma ^d\int \mathrm {d}\mathbf {V}_{1}\int \mathrm {d}\mathbf {V}_{2}\;f^{(0)}(\mathbf {V}_1) \frac{\partial f^{(0)}(\mathbf {V}_2)}{\partial V_{2j}}\nonumber \\&\times \int \;\mathrm {d}\widehat{\varvec{\sigma }}\Theta (\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12})(\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})\widehat{\sigma }_i\left[ R_{ij}(\mathbf {V}_1')-R_{ij}(\mathbf {V}_1)\right] . \nonumber \\ \end{aligned}$$
(3.123)

The scattering rules (1.4a) and (1.4b) give

$$\begin{aligned} R_{ij}(\mathbf {V}_1')-R_{ij}(\mathbf {V}_1)= & {} \frac{1}{4}m(1+\alpha )(\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12})\left[ (1+\alpha )(\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12})\left( \widehat{\sigma }_i\widehat{\sigma }_j-\frac{\delta _{ij}}{d}\right) \right. \nonumber \\&\left. -2\left( V_{1i}\widehat{\sigma }_j+V_{1j}\widehat{\sigma }_i \right) +\frac{4}{d}\delta _{ij}(\widehat{\varvec{\sigma }} \cdot \mathbf {V}_{1})\right] , \end{aligned}$$
(3.124)

and so Eq. (3.123) reads

$$\begin{aligned}&\int \mathrm {d}\mathbf {V} R_{ij}(\mathbf {V}) \mathcal{K}_i \left[ \frac{\partial f^{(0)}}{\partial V_j}\right] =m\chi \frac{1+\alpha }{2d} \sigma ^d \int \mathrm {d}\mathbf {V}_{1}\int \mathrm {d}\mathbf {V}_{2}\;f^{(0)}(\mathbf {V}_1) \frac{\partial f^{(0)}(\mathbf {V}_2)}{\partial V_{2j}}\nonumber \\&\; \; \times \, \int \;\mathrm {d}\widehat{\varvec{\sigma }}\Theta (\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12}) (\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})^2\Bigg \{d \; V_{1j}+\widehat{\sigma }_j\Big [(d-2)(\widehat{\varvec{\sigma }} \cdot \mathbf {V}_{1})\nonumber \\&\; \; -\,\frac{d-1}{2}(1+\alpha )(\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})\Big ]\Bigg \}=m\chi \frac{d-1}{2d} \sigma ^d (1+\alpha )\int \mathrm {d}\mathbf {V}_{1}\int \mathrm {d}\mathbf {V}_{2}\;f^{(0)}(\mathbf {V}_1) \nonumber \\&\; \; \times \, f^{(0)}(\mathbf {V}_2) \int \;\mathrm {d}\widehat{\varvec{\sigma }}\Theta (\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12})(\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12}) \left[ 4(\widehat{\varvec{\sigma }} \cdot \mathbf {V}_{1})-\frac{3}{2}(1+\alpha ) (\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12})\right] \nonumber \\= & {} m\chi \frac{d-1}{2d} B_2 \sigma ^d (1+\alpha )\int \mathrm {d}\mathbf {V}_{1}\int \mathrm {d}\mathbf {V}_{2}\;f^{(0)}(\mathbf {V}_1) f^{(0)}(\mathbf {V}_2)\nonumber \\&\times \, \left[ 4(\mathbf {V}_1\cdot \mathbf {g}_{12})-\frac{3}{2}(1+\alpha )g_{12}^2\right] \nonumber \\= & {} 2^{d-2}(d-1)\chi \phi (1+\alpha )(1-3\alpha )n T. \nonumber \\ \end{aligned}$$
(3.125)

In the integration over the angle \(\widehat{\varvec{\sigma }}\) use has been made of the result (2.139).

The integrals involving the operator \(\varvec{\mathcal {K}}\) in evaluation of the heat flux transport coefficients can be computed in a similar way. Thus, the integral (3.69) in particular is

$$\begin{aligned} \int \mathrm {d}\mathbf {V} \mathbf {S}(\mathbf {V}) \cdot \varvec{\mathcal {K}} \left[ f^{(0)}\right]= & {} -\chi \sigma ^{d-1}\int \mathrm {d}\mathbf {V}_{1}\int \mathrm {d}\mathbf {V}_{2}\;f^{(0)}(\mathbf {V}_1) f^{(0)}(\mathbf {V}_2)\nonumber \\&\times \,\int \;\mathrm {d}\widehat{\varvec{\sigma }}\Theta (\widehat{\varvec{\sigma }} \cdot \mathbf {g}_{12})(\widehat{\varvec{\sigma }}\cdot \mathbf {g}_{12})\varvec{\sigma }\cdot \left[ \mathbf {S}(\mathbf {V}_1')-\mathbf {S}(\mathbf {V}_1)\right] , \nonumber \\ \end{aligned}$$
(3.126)

where

$$\begin{aligned} \mathbf{S}(\mathbf{V}_{1}')-\mathbf{S}(\mathbf{V}_{1})= & {} \frac{m}{4}(1+\alpha )(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12})\Bigg \{ \bigg [ \frac{1-\alpha ^{2}}{4}(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12})^{2}-G_{12}^{2}-\frac{1}{4}g_{12}^{2}-(\mathbf{g}_{12}\cdot \mathbf{G}_{12})\nonumber \\&+\,(1+\alpha ) (\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12})(\widehat{\varvec{\sigma }} \cdot \mathbf{G}_{12})+(d+2)\frac{T}{m}\bigg ] \widehat{\varvec{\sigma }} -\bigg [\frac{1-\alpha }{2}(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}) \nonumber \\&+\,2(\widehat{\varvec{\sigma }}\cdot \mathbf{G}_{12})\bigg ] \mathbf{G}_{12} -\bigg [\frac{1-\alpha }{4}(\widehat{\varvec{\sigma }} \cdot \mathbf{g}_{12})+(\widehat{\varvec{\sigma }}\cdot \mathbf{G}_{12}) \bigg ] \mathbf{g}_{12}\Bigg \}. \end{aligned}$$
(3.127)

Here, \(\mathbf {G}_{12}=(\mathbf {V}_1+\mathbf {V}_2)/2\). Substitution of Eq. (3.127) into Eq. (3.126) and integration over the solid angle leads to the expression (3.69). The result (3.68) may be derived by following similar steps.

Now the (reduced) collision frequency \(\nu _\eta ^*\) is considered. According to the definition (3.60) and the scattering rule (3.124), we obtain

$$\begin{aligned} \nu _\eta ^*= & {} \frac{(2d+3-3\alpha )(1+\alpha )}{2(d+2)(d-1)(d+3)}\frac{m}{nT^2\nu _0}\sigma ^{d-1}B_3\int \mathrm {d}\mathbf {V}_1 \int \mathrm {d}\mathbf {V}_2\; f^{(0)}(\mathbf {V}_1) f_\text {M}(\mathbf {V}_2) \nonumber \\&\times \, R_{ij}(\mathbf {V}_2)g_{12} g_{12i}g_{12j}, \end{aligned}$$
(3.128)

where \(\nu _0= n T/\eta _0\) and the standard first Sonine approximation (3.88) for \(\mathcal{C}_{ij}\) has been considered. Additionally, use has been made of Eqs. (2.139) and (2.148). The leading Sonine approximation (3.76) to \(f^{(0)}\) can be written as \(f^{(0)}(\mathbf {V})=n \upsilon _\text {th}^{-d} \varphi (\mathbf {c})\), where \(\varphi (\mathbf {c})=\pi ^{-d/2}\lim _{\epsilon _1\rightarrow 1}(1+\varXi _1)\mathrm {e}^{-\epsilon _1 c^2}\) and

$$\begin{aligned} \varXi _i = \frac{a_2}{2}\left[ \frac{\partial ^2}{\partial \epsilon _i^2}+(d+2)\frac{\partial }{\partial \epsilon _i}+ \frac{d(d+2)}{4}\right] . \end{aligned}$$
(3.129)

Substitution of the above approximation into Eq. (3.128) yields

$$\begin{aligned} \nu _\eta ^*=\frac{\varGamma \left( \frac{d}{2}\right) }{\varGamma \left( \frac{d+3}{2}\right) }\frac{(2d+3-3\alpha )(1+\alpha )}{2\sqrt{2}(d-1)(d+3)}\lim _{\epsilon _1 \rightarrow 1}\left( 1+\varXi _1\right) I_\eta (\epsilon _1), \end{aligned}$$
(3.130)

where

$$\begin{aligned} I_\eta (\epsilon _1)= \pi ^{-d}\int \mathrm {d}\mathbf {c}_1 \int \mathrm {d}\mathbf {c}_2 \mathrm {e}^{-(\epsilon _1 c_1^2+c_2^2)} \left( c_{2i}c_{2j}-\frac{1}{d}c_2^2 \delta _{ij} \right) g_{12}^* g_{12i}^*g_{12j}^* \end{aligned}$$
(3.131)

and \(\mathbf {g}_{12}^*=\mathbf {c}_1-\mathbf {c}_2\). The integral \(I_\eta \) can be performed by the change of variables (2.133), i.e., \(\mathbf {x}=\mathbf {c}_1-\mathbf {c}_2\) and \(\mathbf {y}=\epsilon _1 \mathbf {c}_1+\mathbf {c}_2\). With this change, we obtain

$$\begin{aligned} I_\eta (\epsilon _1)=\frac{d-1}{d}\frac{\varGamma \left( \frac{d+5}{2}\right) }{\varGamma \left( \frac{d}{2}\right) }\epsilon _1^{-d/2} \left( \frac{1+\epsilon _1}{\epsilon _1}\right) ^{1/2}. \end{aligned}$$
(3.132)

Use of (3.131) in Eq. (3.129) leads to the result displayed in Table 3.1. The expression of \(\nu _{\kappa }^*\) can be obtained by following similar steps to those made for \(\nu _{\eta }^*\).

In the modified first Sonine approximation, \(\nu _\eta ^*\) is given by

$$\begin{aligned} \nu _\eta ^*= & {} \frac{(2d+3-3\alpha )(1+\alpha )}{2(d+2)(d-1)(d+3)}\frac{1}{1+a_2}\frac{m}{nT^2\nu _0}\sigma ^{d-1}B_3\int \mathrm {d}\mathbf {V}_1 \int \mathrm {d}\mathbf {V}_2\; f^{(0)}(\mathbf {V}_1) f^{(0)}(\mathbf {V}_2) \nonumber \\&\times \, R_{ij}(\mathbf {V}_2)g_{12} g_{12i}g_{12j}. \end{aligned}$$
(3.133)

To compute this integral, the leading Sonine approximation (3.85) for \(f^{(0)}\) is employed, as before. By using the operators defined by Eq. (3.129), the integral (3.133) can be rewritten as

$$\begin{aligned} \nu _\eta ^*=\frac{\varGamma \left( \frac{d}{2}\right) }{\varGamma \left( \frac{d+3}{2}\right) }\frac{(2d+3-3\alpha )(1+\alpha )}{2\sqrt{2}(d-1)(d+3)}\frac{1}{1+a_2}\lim _{\epsilon _1 \rightarrow 1}\lim _{\epsilon _2 \rightarrow 1} (1+\varXi _1+\varXi _2)F_{\eta }(\epsilon _1,\epsilon _2), \end{aligned}$$
(3.134)

where

$$\begin{aligned} F_\eta (\epsilon _1,\epsilon _2)= \pi ^{-d}\int \mathrm {d}\mathbf {c}_1 \int \mathrm {d}\mathbf {c}_2 \mathrm {e}^{-(\epsilon _1 c_1^2+\epsilon _2 c_2^2)} \left( c_{2i}c_{2j}-\frac{1}{d}c_2^2 \delta _{ij} \right) g_{12}^* g_{12i}^*g_{12j}^*. \end{aligned}$$
(3.135)

In the numerator of Eq. (3.134) nonlinear terms in \(a_2\) have, as usual, been neglected, so \((1+\varXi _1)(1+\varXi _2)\rightarrow 1+\varXi _1+\varXi _2\). Note that the standard first Sonine approximation to \(\nu _\eta ^*\) is recovered when \(\varXi _2=0\) and \(a_2=0\) in the numerator and denominator, respectively, of Eq. (3.134). The integral \(F_\eta (\epsilon _1,\epsilon _2)\) can easily be performed by introducing the variables \(\mathbf {x}=\mathbf {c}_1-\mathbf {c}_2\) and \(\mathbf {y}=\epsilon _1 \mathbf {c}_1+\epsilon _2 \mathbf {c}_2\), with the Jacobian \((\epsilon _1+\epsilon _2)^{-d}\). After some algebra, we obtain

$$\begin{aligned} F_\eta (\epsilon _1,\epsilon _2)=\frac{d-1}{d}\frac{\varGamma \left( \frac{d+5}{2}\right) }{\varGamma \left( \frac{d}{2}\right) } \left( \epsilon _1\epsilon _2\right) ^{-(d+5)/2}\epsilon _1^2 \left( \epsilon _1+\epsilon _2\right) ^{1/2}. \end{aligned}$$
(3.136)

As expected, \(F_\eta (\epsilon _1,1)=I_\eta (\epsilon _1)\). The expression for \(\nu _\eta ^*\) provided in Table 3.1 follows directly from Eqs. (3.134) and (3.136) after expanding the term \((1+a_2)^{-1}\) and neglecting nonlinear terms in \(a_2\). Similarly, the expression for \(\nu _\kappa ^*\) in the modified first Sonine approximation can be derived by using similar mathematical steps. Its explicit form is given in Table 3.1.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garzó, V. (2019). Navier–Stokes Transport Coefficients for Monocomponent Granular Gases. I. Theoretical Results. In: Granular Gaseous Flows. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-030-04444-2_3

Download citation

Publish with us

Policies and ethics