Skip to main content

Evidence for the Role of Salinity and Alkalinity in Plant Diversification in Australia

  • Chapter
  • First Online:
Sabkha Ecosystems

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 49))

  • 1005 Accesses

Abstract

Australia is the world’s driest inhabited continent and has some of the world’s most stable landscapes and some of the oldest flora, dating back to Gondwana. Two-third of the island continent experiences arid and semiarid climate. Under these climatic conditions where seasonal water deficits occur regularly, salts and carbonates accumulate in soils. Plant distributions have shifted and plants have evolved to adapt to these conditions. This paper summarizes the evidence for the role of soil salinity and alkalinity as drivers in plant diversification in Australia; there is good evidence that both have played an important role for grasses and acacias. Moreover adaptation to salinity may have facilitated the evolution of C4 photosynthesis in Neurachne, an Australian endemic clade of grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barlow BA (1981) The Australian flora: its origin and evolution. In Flora of Australia vol. 1. pp 25–75. Griffin Press, Netley.

    Google Scholar 

  • Brown SL, Warwick NW, Prychid CJ (2013) Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)? Plant Physiol Biochem 73:219–228

    Article  CAS  Google Scholar 

  • Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25

    Article  Google Scholar 

  • Bui EN, Gonzalez-Orozco CE, Miller JT (2014a) Acacia, climate, and geochemistry in Australia. Plant Soil 381:161–175

    Article  CAS  Google Scholar 

  • Bui EN, Thornhill A, Miller JT (2014b) Salt-and alkaline-tolerance are linked in Acacia. Biol Lett 10(7):20140278

    Article  Google Scholar 

  • Christin PA, Wallace MJ, Clayton H et al (2012) Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae. J Exp Bot 63(17):6297–6308

    Article  CAS  Google Scholar 

  • Coleman PSJ, Cook FS (2009) Habitat preferences of the Australian endangered samphire Tecticornia flabelliformis. Trans R Soc S Aust 133(2):300–306. https://doi.org/10.1080/03721426.2009.10887127

    Article  Google Scholar 

  • DEWR (2007) Australia’s native vegetation: a summary of Australia’s major vegetation groups. Australian Government, Canberra.

    Google Scholar 

  • Ellison JC, Simmonds S (2003) Structure and productivity of inland mangrove stands at Lake MacLeod, Western Australia. J R Soc West Aust 86:21–26

    Google Scholar 

  • He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends in Plant Science 19(3):166–174

    Article  CAS  Google Scholar 

  • Joseph S, Bhave M, Miller JT, Murphy DJ (2013) Rapid identification of Acacia species with potential salt tolerance by using nuclear ribosomal DNA markers. Sustain Agric Res 2(4):77

    Article  Google Scholar 

  • Joseph S, Murphy DJ, Bhave M (2015) Identification of salt tolerant Acacia species for saline land utilisation. Biologia 70(2):174–182

    Article  Google Scholar 

  • Kadereit G, Ackerly D, Pirie MD (2012) A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae ss). Proc R Soc B 279(1741):3304–3311. https://doi.org/10.1098/rspb.2012.04401471e2954.

    Article  PubMed  Google Scholar 

  • Knorr G, Butzin M, Micheels A, Lohmann G (2011) A warm Miocene climate at low atmospheric CO2 levels. Geophys Res Lett 38:L20701. https://doi.org/10.1029/2011GL048873

    Article  CAS  Google Scholar 

  • Lambers H, Shane MW, Laliberté E et al (2014) Plant mineral nutrition. In: Plant life on the sandplains in Southwest Australia, a global biodiversity hotspot. UWA Publishing, Crawley, Crawley, pp 101–127

    Google Scholar 

  • Martin HA (2006) Cenozoic climatic change and the development of the arid vegetation in Australia. J Arid Environ 66:533–563

    Article  Google Scholar 

  • Mernagh TP (ed) (2013) A review of Australian salt lakes and assessment of their potential for strategic resources. Record 2013/39. Geoscience Australia, Canberra

    Google Scholar 

  • Mernagh TP, Bastrakov EN, Jaireth S et al (2016) A review of Australian salt lakes and associated mineral systems. Aust J Earth Sci 63(2):1–27

    Article  Google Scholar 

  • Miller JT, Murphy DJ, Ho SY, Cantrill DJ, Seigler D (2013) Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. Aust J Bot 61(6):436–445

    Article  Google Scholar 

  • Monson RK (2003) Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int J Plant Sci 164:S43–S54

    Article  CAS  Google Scholar 

  • Morton SR, Smith DS, Dickman CR et al (2011) A fresh framework for the ecology of arid Australia. J Arid Environ 75(4):313–329

    Article  Google Scholar 

  • Nicolle D (2005) A rare and endangered new subspecies of Eucalyptus sargentii (Myrtaceae) with high potential for revegetation of saline sites from South-Western Australia and notes on E. diminuta and E. sargentii subsp. fallens. Nuytsia 15:395–402

    Google Scholar 

  • Nicolle D (2008) Systematic studies of the mallees, Eucalyptus series Subulatae (Myrtaceae). Dissertation, Flinders University of South Australia.

    Google Scholar 

  • Nicolle D, Brooker MIH (2005) Reassessment of the saline-dwelling Eucalyptus spathulata complex (Myrtaceae) from southern Western Australia. Nuytsia 15:403–429

    Google Scholar 

  • Prendergast HDV, Hattersley PW (1985) Distribution and cytology of Australian Neurachne and its allies (Poaceae), a group containing C3, C4 and C3-C4 intermediate species. Aust J Bot 33(3):317–336

    Article  Google Scholar 

  • Reid N, Robson TC, Radcliffe B, Verrall M (2016) Excessive sulphur accumulation and ionic storage behaviour identified in species of Acacia (Leguminosae: Mimosoideae). Ann Bot 117(4):653–666

    Article  CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  Google Scholar 

  • Richards LA (ed) (1954) Diagnosis and improvement of saline and alkali soils, USDA handbook 60. USDA, Washington, DC

    Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  Google Scholar 

  • Sander J, Wardell-Johnson G (2011) Impacts of soil fertility on species and phylogenetic turnover in the high-rainfall zone of the Southwest Australian global biodiversity hotspot. Plant Soil 345:103–124

    Article  CAS  Google Scholar 

  • Saslis-Lagoudakis CH, Hua X, Bui E et al (2015) Predicting species’ tolerance to salinity and alkalinity using distribution data and geochemical modelling: a case study using Australian grasses. Ann Bot 115(3):343–351

    Article  CAS  Google Scholar 

  • Steffen S, Ball P, Mucina L, Kadereit G (2015) Phylogeny, biogeography and ecological diversification of Sarcocornia (Salicornioideae, Amaranthaceae). Ann Bot 115(3):353–368

    Article  CAS  Google Scholar 

  • Voznesenskaya EV, Akhani H, Koteyeva NK et al (2008) Structural, biochemical, and physiological characterization of photosynthesis in two C4 subspecies of Tecticornia indica and the C3 species Tecticornia pergranulata (Chenopodiaceae). J Exp Bot 59(7):1715–1734

    Article  CAS  Google Scholar 

  • Wang X, Gowik U, Tang H et al (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10:R68

    Article  Google Scholar 

  • Warren JK (2016) Evaporites: a geological compendium. Springer, Cham

    Google Scholar 

  • Wilford J, de Caritat P, Bui E (2015) Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors. Geoderma 259–260:81–92. https://doi.org/10.1016/j.geoderma.2015.05.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth N. Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bui, E.N. (2019). Evidence for the Role of Salinity and Alkalinity in Plant Diversification in Australia. In: Gul, B., Böer, B., Khan, M., Clüsener-Godt, M., Hameed, A. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-04417-6_2

Download citation

Publish with us

Policies and ethics