Visualizing the Template of a Chaotic Attractor

  • Maya Olszewski
  • Jeff Meder
  • Emmanuel Kieffer
  • Raphaël Bleuse
  • Martin Rosalie
  • Grégoire DanoyEmail author
  • Pascal Bouvry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)


Chaotic attractors are solutions of deterministic processes, of which the topology can be described by templates. We consider templates of chaotic attractors bounded by a genus–1 torus described by a linking matrix. This article introduces a novel and unique tool to validate a linking matrix, to optimize the compactness of the corresponding template and to draw this template. The article provides a detailed description of the different validation steps and the extraction of an order of crossings from the linking matrix leading to a template of minimal height. Finally, the drawing process of the template corresponding to the matrix is saved in a Scalable Vector Graphics (SVG) file.


Chaotic attractor Template Linking matrix Optimization Visualization 



The experiments presented in this paper were carried out using the HPC facilities of the University of Luxembourg [29] (see This work is partially funded by the joint research programme UL/SnT-ILNAS on Digital Trust for Smart ICT.


  1. 1.
    Anastassiou, S., Bountis, T., Petalas, Y.G.: On the topology of the Lü attractor and related systems. J. Phys. A: Math. Theor. 41(48), 485101 (2008). Scholar
  2. 2.
    Barrio, R., Blesa, F., Serrano, S.: Qualitative analysis of the rössler equations: bifurcations of limit cycles and chaotic attractors. Phys. D: Nonlinear Phenom. 238(13), 1087–1100 (2009). Scholar
  3. 3.
    Barrio, R., Blesa, F., Serrano, S.: Topological changes in periodicity hubs of dissipative systems. Phys. Rev. Lett. 108(21), 214102 (2012). Scholar
  4. 4.
    Barrio, R., Dena, A., Tucker, W.: A database of rigorous and high-precision periodic orbits of the Lorenz model. Comput. Phys. Commun. 194, 76–83 (2015). Scholar
  5. 5.
    Benincà, E., Ballantine, B., Ellner, S.P., Huisman, J.: Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Nat. Acad. Sci. 112(20), 6389–6394 (2015). Scholar
  6. 6.
    Birman, J.S., Williams, R.F.: Knotted periodic orbits in dynamical systems–I: Lorenz’s equation. Topology 22(1), 47–82 (1983). Scholar
  7. 7.
    Boulant, G., Lefranc, M., Bielawski, S., Derozier, D.: A nonhorseshoe template in a chaotic laser model. Int. J. Bifurcat. Chaos 08(05), 965–975 (1998). Scholar
  8. 8.
    Budroni, M.A., Calabrese, I., Miele, Y., Rustici, M., Marchettini, N., Rossi, F.: Control of chemical chaos through medium viscosity in a batch ferroin-catalysed Belousov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 19(48), 32235–32241 (2017). Scholar
  9. 9.
    Cross, D.J., Gilmore, R.: Dressed return maps distinguish chaotic mechanisms. Phys. Rev. E 87(1), 012919 (2013). Scholar
  10. 10.
    Ghrist, R.W., Holmes, P.J., Sullivan, M.C.: Knots and Links in Three-Dimensional Flows. Springer, Berlin (1997). Scholar
  11. 11.
    Gilmore, R.: Topological analysis of chaotic dynamical systems. Rev. Mod. Phys. 70(4), 1455–1529 (1998). Scholar
  12. 12.
    Gilmore, R., Rosalie, M.: Algorithms for concatenating templates. Chaos: Interdisc J. Nonlinear Sci. 26(3), 033102 (2016). Scholar
  13. 13.
    Kumar, S., Strachan, J.P., Williams, R.S.: Chaotic dynamics in nanoscale NbO\(_2\) Mott memristors for analogue computing. Nature 548(7667), 318–321 (2017). Scholar
  14. 14.
    Larger, L., Penkovsky, B., Maistrenko, Y.: Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun. 6(1), 7752 (2015). Scholar
  15. 15.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963).<0130:dnf>;2CrossRefGoogle Scholar
  16. 16.
    Malasoma, J.M.: What is the simplest dissipative chaotic jerk equation which is parity invariant? Phys. Lett. A 264(5), 383–389 (2000). Scholar
  17. 17.
    Melvin, P., Tufillaro, N.B.: Templates and framed braids. Phys. Rev. A 44, R3419–R3422 (1991). Scholar
  18. 18.
    Mindlin, G.B., Hou, X.J., Solari, H.G., Gilmore, R., Tufillaro, N.B.: Classification of strange attractors by integers. Phys. Rev. Lett. 64(20), 2350–2353 (1990). Scholar
  19. 19.
    Moitzi, M.: svgwrite (Python Library) (2018). Accessed 26 May 2018
  20. 20.
    Olszewski, M., et al.: Visualizing the template of a chaotic attractor. arXiv preprint arXiv:1807.11853 (2018)
  21. 21.
    Rosalie, M.: Templates and subtemplates of Rössler attractors from a bifurcation diagram. J. Phys. A: Math. Theor. 49(31), 315101 (2016). Scholar
  22. 22.
    Rosalie, M.: Chaotic mechanism description by an elementary mixer for the template of an attractor. arXiv preprint arXiv:1703.02768 (2017)
  23. 23.
    Rosalie, M., Danoy, G., Chaumette, S., Bouvry, P.: Chaos-enhanced mobility models for multilevel swarms of UAVs. Swarm Evol. Comput. 41, 36–48 (2018). Scholar
  24. 24.
    Rosalie, M., Letellier, C.: Systematic template extraction from chaotic attractors: I. genus-one attractors with an inversion symmetry. J. Phys. A: Math. Theor. 46(37), 375101 (2013). Scholar
  25. 25.
    Rosalie, M., Letellier, C.: Systematic template extraction from chaotic attractors: II. genus-one attractors with multiple unimodal folding mechanisms. J. Phys. A: Math. Theor. 48(23), 235101 (2015). Scholar
  26. 26.
    Rössler, O.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976). Scholar
  27. 27.
    Suzuki, Y., Lu, M., Ben-Jacob, E., Onuchic, J.N.: Periodic, quasi-periodic and chaotic dynamics in simple gene elements with time delays. Sci. Rep. 6(1), 21037 (2016). Scholar
  28. 28.
    Tufillaro, N.B., Abbott, T., Reilly, J.: An Experimental Approach to Nonlinear Dynamics and Chaos. Addison-Wesley, Redwood City (1992)zbMATHGoogle Scholar
  29. 29.
    Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic HPC cluster: the UL experience. In: 2014 International Conference on High Performance Computing & Simulation (HPCS). IEEE (2014).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.FSTC/CSC-ILIAS, University of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.SnT, University of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations