Universal Slope Sets for Upward Planar Drawings

  • Michael A. Bekos
  • Emilio Di GiacomoEmail author
  • Walter Didimo
  • Giuseppe Liotta
  • Fabrizio Montecchiani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)


We prove that every set \(\mathcal {S}\) of \(\varDelta \) slopes containing the horizontal slope is universal for 1-bend upward planar drawings of bitonic st-graphs with maximum vertex degree \(\varDelta \), i.e., every such digraph admits a 1-bend upward planar drawing whose edge segments use only slopes in \(\mathcal {S}\). This result is worst-case optimal in terms of the number of slopes, and, for a suitable choice of \(\mathcal {S}\), it gives rise to drawings with worst-case optimal angular resolution. In addition, we prove that every such set \(\mathcal {S}\) can be used to construct 2-bend upward planar drawings of n-vertex planar st-graphs with at most \(4n-9\) bends in total. Our main tool is a constructive technique that runs in linear time.



Research partially supported by project: “Algoritmi e sistemi di analisi visuale di reti complesse e di grandi dimensioni - Ricerca di Base 2018, Dipartimento di Ingegneria, Università degli Studi di Perugia”.


  1. 1.
    Angelini, P., Bekos, M.A., Liotta, G., Montecchiani, F.: A universal slope set for 1-bend planar drawings. In: Aronov, B., Katz, M.J. (eds.) SoCG. LIPIcs, vol. 77, pp. 9:1–9:16. Schloss Dagstuhl (2017).,
  2. 2.
    Bekos, M.A., Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Universal slope sets for upward planar drawings. ArXiv e-prints abs/1803.09949v2 (2018).
  3. 3.
    Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings with one bend per edge. J. Graph Algorithms Appl. 19(2), 657–680 (2015). Scholar
  4. 4.
    Bekos, M.A., Kaufmann, M., Krug, R.: On the total number of bends for planar octilinear drawings. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 152–163. Springer, Heidelberg (2016). Scholar
  5. 5.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998). Scholar
  6. 6.
    Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998).,00026-6MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bodlaender, H.L., Tel, G.: A note on rectilinearity and angular resolution. J. Graph Algorithms Appl. 8, 89–94 (2004). Scholar
  8. 8.
    Chaplick, S., et al.: Planar L-drawings of directed graphs. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 465–478. Springer, Cham (2018). Scholar
  9. 9.
    Chimani, M., Zeranski, R.: Upward planarity testing in practice: SAT formulations and comparative study. ACM J. Exp. Algorithmics 20, 1.2:1.1–1.2:1.27 (2015). Scholar
  10. 10.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  11. 11.
    Czyzowicz, J., Pelc, A., Rival, I., Urrutia, J.: Crooked diagrams with few slopes. Order 7(2), 133–143 (1990). Scholar
  12. 12.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, New Jersey (1999)zbMATHGoogle Scholar
  13. 13.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988).,90123-5MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Di Giacomo, E., Liotta, G., Montecchiani, F.: 1-bend upward planar drawings of SP-digraphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 123–130. Springer, Cham (2016). Scholar
  15. 15.
    Didimo, W.: Upward graph drawing. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms. Springer, Heidelberg (2015). Scholar
  16. 16.
    Duncan, C., Goodrich, M.T.: Planar orthogonal and polyline drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC (2013)Google Scholar
  17. 17.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990). Scholar
  18. 18.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). Scholar
  19. 19.
    Gronemann, M.: Bitonic st-orderings for upward planar graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 222–235. Springer, Cham (2016). Scholar
  20. 20.
    Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC (2013)Google Scholar
  21. 21.
    Hong, S., Merrick, D., do Nascimento, H.A.D.: Automatic visualisation of metro maps. J. Vis. Lang. Comput. 17(3), 203–224 (2006). Scholar
  22. 22.
    Kelly, D.: Fundamentals of planar ordered sets. Discrete Math. 63(2–3), 197–216 (1987).,90008-2MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013). Scholar
  24. 24.
    Knauer, K., Walczak, B.: Graph drawings with one bend and few slopes. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 549–561. Springer, Heidelberg (2016). Scholar
  25. 25.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: FOCS, pp. 270–281. IEEE (1980).
  26. 26.
    Nöllenburg, M.: Automated drawings of metro maps. Technical report 2005–25, Fakultät für Informatik, Universität Karlsruhe (2005)Google Scholar
  27. 27.
    Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans. Vis. Comput. Graph. 17(5), 626–641 (2011). Scholar
  28. 28.
    Stott, J.M., Rodgers, P., Martinez-Ovando, J.C., Walker, S.G.: Automatic metro map layout using multicriteria optimization. IEEE Trans. Vis. Comput. Graph. 17(1), 101–114 (2011). Scholar
  29. 29.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987). Scholar
  30. 30.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140 (1981). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Emilio Di Giacomo
    • 2
    Email author
  • Walter Didimo
    • 2
  • Giuseppe Liotta
    • 2
  • Fabrizio Montecchiani
    • 2
  1. 1.Institut für InformatikUniversität TübingenTübingenGermany
  2. 2.Dipartimento di IngegneriaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations