Advertisement

Bend-Minimum Orthogonal Drawings in Quadratic Time

  • Walter DidimoEmail author
  • Giuseppe Liotta
  • Maurizio Patrignani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)

Abstract

Let G be a planar 3-graph (i.e., a planar graph with vertex degree at most three) with n vertices. We present the first \(O(n^2)\)-time algorithm that computes a planar orthogonal drawing of G with the minimum number of bends in the variable embedding setting. If either a distinguished edge or a distinguished vertex of G is constrained to be on the external face, a bend-minimum orthogonal drawing of G that respects this constraint can be computed in O(n) time. Different from previous approaches, our algorithm does not use minimum cost flow models and computes drawings where every edge has at most two bends.

References

  1. 1.
    Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998).  https://doi.org/10.1016/S0925-7721(97)00026-6MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. ACM Trans. Algorithms 12(3), 33:1–33:32 (2016).  https://doi.org/10.1145/2838736MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brandenburg, F., Eppstein, D., Goodrich, M.T., Kobourov, S., Liotta, G., Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24595-7_55CrossRefzbMATHGoogle Scholar
  4. 4.
    Chang, Y., Yen, H.: On bend-minimized orthogonal drawings of planar 3-graphs. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Computational Geometry, SoCG 2017, 4–7 July 2017, Brisbane, Australia. LIPIcs, vol. 77, pp. 29:1–29:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017).  https://doi.org/10.4230/LIPIcs.SoCG.2017.29, http://www.dagstuhl.de/dagpub/978-3-95977-038-5
  5. 5.
    Cohen, M.B., Madry, A., Tsipras, D., Vladu, A.: Matrix scaling and balancing via box constrained newton’s method and interior point methods. In: Umans, C. (ed.) 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15–17, 2017. pp. 902–913. IEEE Computer Society (2017).  https://doi.org/10.1109/FOCS.2017.88, http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8100284
  6. 6.
    Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. J. Graph Algorithms Appl. 16(3), 635–650 (2012).  https://doi.org/10.7155/jgaa.00265MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  8. 8.
    Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998).  https://doi.org/10.1137/S0097539794262847MathSciNetCrossRefGoogle Scholar
  9. 9.
    Di Giacomo, E., Liotta, G., Tamassia, R.: Graph drawing. In: Goodman, J., O’Rourke, J., Toth, C. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn, pp. 1451–1477. Chapman and Hall/CRC, Boca Raton (2017)Google Scholar
  10. 10.
    Didimo, W., Liotta, G., Patrignani, M.: On the Complexity of HV-rectilinear Planarity Testing. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 343–354. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45803-7_29CrossRefGoogle Scholar
  11. 11.
    Didimo, W., Liotta, G., Patrignani, M.: Bend-minimum orthogonal drawings inquadratic time. CoRR 1804.05813v3 (2018). http://arxiv.org/abs/1804.05813v3
  12. 12.
    Garg, A., Liotta, G.: Almost bend-optimal planar orthogonal drawings of biconnected degree-3 planar graphs in quadratic time. In: Kratochvíyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 38–48. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-46648-7_4CrossRefGoogle Scholar
  13. 13.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001).  https://doi.org/10.1137/S0097539794277123MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In:Marks, J. (ed.) Graph Drawing, 8th International Symposium, GD 2000,Colonial Williamsburg, VA, USA, September 20-23, 2000, Proceedings. LectureNotes in Computer Science, vol. 1984, pp. 77–90. Springer (2000). https://doi.org/10.1007/3-540-44541-2_8CrossRefGoogle Scholar
  15. 15.
    Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973).  https://doi.org/10.1137/0202012MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996).  https://doi.org/10.1007/BF02086606MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91 (1998).  https://doi.org/10.1016/S0166-218X(97)00076-0MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of subdivisions of planar triconnected cubic graphs. IEICE. Transactions 88-D(1), 23–30 (2005)zbMATHGoogle Scholar
  19. 19.
    Rahman, M.S., Nakano, S., Nishizeki, T.: A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic plane graphs. J. Graph Algorithms Appl. 3(4), 31–62 (1999). http://www.cs.brown.edu/publications/jgaa/accepted/99/SaidurNakanoNishizeki99.3.4.pdfMathSciNetCrossRefGoogle Scholar
  20. 20.
    Rahman, M.S., Nishizeki, T.: Bend-minimum orthogonal drawings of plane 3-graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 367–378. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36379-3_32CrossRefGoogle Scholar
  21. 21.
    Rahman, M.S., Nishizeki, T., Naznin, M.: Orthogonal drawings of plane graphs without bends. J. Graph Algorithms Appl. 7(4), 335–362 (2003). http://jgaa.info/accepted/2003/Rahman+2003.7.4.pdfMathSciNetCrossRefGoogle Scholar
  22. 22.
    Storer, J.A.: The node cost measure for embedding graphs on the planar grid (extended abstract). In: Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J. (eds.) Proceedings of the 12th Annual ACM Symposium on Theory of Computing, 28–30 April 1980, Los Angeles, California, USA, pp. 201–210. ACM (1980).  https://doi.org/10.1145/800141.804667
  23. 23.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987).  https://doi.org/10.1137/0216030MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tamassia, R., Tollis, I.G., Vitter, J.S.: Lower bounds for planar orthogonal drawings of graphs. Inf. Process. Lett. 39(1), 35–40 (1991).  https://doi.org/10.1016/0020-0190(91)90059-QMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Thomassen, C.: Plane representations of graphs. In: Bondy, J., Murty, U. (eds.) Progress in Graph Theory, pp. 43–69 (1987)Google Scholar
  26. 26.
    Zhou, X., Nishizeki, T.: Orthogonal drawings of series-parallel graphs with minimum bends. SIAM J. Discrete Math. 22(4), 1570–1604 (2008).  https://doi.org/10.1137/060667621MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Walter Didimo
    • 1
    Email author
  • Giuseppe Liotta
    • 1
  • Maurizio Patrignani
    • 2
  1. 1.Università degli Studi di PerugiaPerugiaItaly
  2. 2.Università Roma TreRomeItaly

Personalised recommendations