Inserting an Edge into a Geometric Embedding

  • Marcel RadermacherEmail author
  • Ignaz Rutter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)


The algorithm to insert an edge e in linear time into a planar graph G with a minimal number of crossings on e [10], is a helpful tool for designing heuristics that minimize edge crossings in drawings of general graphs. Unfortunately, some graphs do not have a geometric embedding \(\varGamma \) such that \(\varGamma +e\) has the same number of crossings as the embedding \(G+e\). This motivates the study of the computational complexity of the following problem: Given a combinatorially embedded graph G, compute a geometric embedding \(\varGamma \) that has the same combinatorial embedding as G and that minimizes the crossings of \(\varGamma +e\). We give polynomial-time algorithms for special cases and prove that the general problem is fixed-parameter tractable in the number of crossings. Moreover, we show how to approximate the number of crossings by a factor \((\varDelta -2)\), where \(\varDelta \) is the maximum vertex degree of G.


  1. 1.
    Chimani, M., Gutwenger, C., Mutzel, P., Wolf, C.: Inserting a vertex into a planar graph. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 375–383 (2009)CrossRefGoogle Scholar
  2. 2.
    Chimani, M., Hlinený, P.: Inserting multiple edges into a planar graph. In: Fekete,S., Lubiw, A. (eds.) Proceedings of the 32nd Annual Symposium on Computational Geometry, SoCG 2016. Leibniz International Proceedings in Informatics (LIPIcs), vol. 51, pp. 30:1–30:15. Schloss DagstuhlLeibniz-Zentrum fuer Informatik (2016).
  3. 3.
    Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). Scholar
  4. 4.
    Eades, P., Hong, S.H., Liotta, G., Katoh, N., Poon, S.H.: Straight-line drawability of a planar graph plus an edge. In: Dehne, F., Sack, J.R., Stege, U. (eds.) Proceedings of the 14th International Symposium on Algorithms and Data Structures, WADS 2015, pp. 301–313 (2015). Scholar
  5. 5.
    Eilam-Tzoreff, T.: The disjoint shortest paths problem. Discrete Appl. Math. 85(2), 113–138 (1998). Scholar
  6. 6.
    Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-commodity flow problems. In: 16th Annual Symposium on Foundations of Computer Science, SFCS 1975, pp. 184–193, October 1975.
  7. 7.
    Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theory Comput. Syst. 10(2), 111–121 (1980). Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gutwenger, C., Klein, K., Mutzel, P.: Planarity testing and optimal edge insertion with embedding constraints. J. Graph Algorithms Appl. 12(1), 73–95 (2008). Scholar
  10. 10.
    Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. Algorithmica 41(4), 289–308 (2005). Scholar
  11. 11.
    Kobayashi, Y., Sommer, C.: On shortest disjoint paths in planar graphs. Discrete Optim. 7(4), 234–245 (2010). Scholar
  12. 12.
    Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 383–408. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  13. 13.
    Radermacher, M., Reichard, K., Rutter, I., Wagner, D.: A geometric heuristic for rectilinear crossing minimization. In: Pagh, R., Venkatasubramanian, S. (eds.) Proceedings of the 20th Workshop on Algorithm Engineering and Experiments, ALENEX 2018, pp. 129–138 (2018). Scholar
  14. 14.
    Radermacher, M., Rutter, I.: Inserting an edge into a geometric embedding. ArXiv e-prints (2018).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Department of Computer Science and MathematicsUniversity of PassauPassauGermany

Personalised recommendations