On L-Shaped Point Set Embeddings of Trees: First Non-embeddable Examples

  • Torsten Mütze
  • Manfred ScheucherEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)


An L-shaped embedding of a tree in a point set is a planar drawing of the tree where the vertices are mapped to distinct points of the set and every edge is drawn as a sequence of two axis-aligned line segments. Let \(f_d(n)\) denote the minimum number N of points such that every n-vertex tree with maximum degree \(d\in \{3,4\}\) admits an L-shaped embedding in every point set of size N, where no two points have the same abscissa or ordinate. The best known upper bounds for this problem are \(f_3(n)=O(n^{1.22})\) and \(f_4(n)=O(n^{1.55})\), respectively. However, no lower bound besides the trivial bound \(f_d(n) \ge n\) is known to this date. In this paper, we present the first examples of n-vertex trees for \(n\in \{13,14,16,17,18,19,20\}\) that require strictly more points than vertices to admit an L-shaped embedding, proving that \(f_4(n)\ge n+1\) for those n. Moreover, using computer assistance, we show that every tree on \(n\le 11\) vertices admits an L-shaped embedding in every set of n points, proving that \(f_d(n)=n\), \(d\in \{3,4\}\), for those n.


L-shaped embedding Point set Tree SAT 


  1. 1.
    Aichholzer, O., Hackl, T., Scheucher, M.: Planar L-shaped point set embeddings of trees. In: Proceedings of 32nd European Workshop on Computational Geometry (EuroCG 2016), pp. 51–54 (2016).
  2. 2.
    Bárány, I., Buchin, K., Hoffmann, M., Liebenau, A.: An improved bound for orthogeodesic point set embeddings of trees. In: Proceedings of 31st European Workshop on Computational Geometry (EuroCG 2015), pp. 47–50 (2016).
  3. 3.
    Biedl, T., Chan, T.M., Derka, M., Jain, K., Lubiw, A.: Improved bounds for drawing trees on fixed points with L-shaped edges. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 305–317. Springer, Cham (2018). Scholar
  4. 4.
    Biere, A.: PicoSAT essentials. J. Satisf. Boolean Model. Comput. (JSAT) 4, 75–97 (2008).
  5. 5.
    Di Giacomo, E., Frati, F., Fulek, R., Grilli, L., Krug, M.: Orthogeodesic point-set embedding of trees. Comput. Geom. 46(8), 929–944 (2013). Scholar
  6. 6.
    Fink, M., Haunert, J.-H., Mchedlidze, T., Spoerhase, J., Wolff, A.: Drawing graphs with vertices at specified positions and crossings at large angles. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 441–442. Springer, Heidelberg (2012). Scholar
  7. 7.
    Kano, M., Suzuki, K.: Geometric graphs in the plane lattice. In: Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 274–281. Springer, Heidelberg (2012). Scholar
  8. 8.
    Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-geodesic embedding of planar graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–218. Springer, Heidelberg (2010). Scholar
  9. 9.
    Mütze, T., Scheucher, M.: On L-shaped point set embeddings of trees: first non-embeddable examples (2018).
  10. 10.
    Scheucher, M.: Python program to generate the SAT model.
  11. 11.
    Scheucher, M.: Orthogeodesic point set embeddings of outerplanar graphs. Master’s thesis, Graz University of Technology (2015).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations