Advertisement

On the Area-Universality of Triangulations

  • Linda KleistEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)

Abstract

We study straight-line drawings of planar graphs with prescribed face areas. A plane graph is area-universal if for every area assignment on the inner faces, there exists a straight-line drawing realizing the prescribed areas.

For triangulations with a special vertex order, we present a sufficient criterion for area-universality that only requires the investigation of one area assignment. Moreover, if the sufficient criterion applies to one plane triangulation, then all embeddings of the underlying planar graph are also area-universal. To date, it is open whether area-universality is a property of a plane or planar graph.

We use the developed machinery to present area-universal families of triangulations. Among them we characterize area-universality of accordion graphs showing that area-universal and non-area-universal graphs may be structural very similar.

Keywords

Area-universality Triangulation Planar graph Face area 

Notes

Acknowledgements

I thank Udo Hoffmann and Sven Jäger for helpful comments.

References

  1. 1.
    Alam, M.J., Biedl, T.C., Felsner, S., Kaufmann, M., Kobourov, S.G., Ueckerdt, T.: Computing cartograms with optimal complexity. Discrete Comput. Geom. 50(3), 784–810 (2013).  https://doi.org/10.1007/s00454-013-9521-1MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Angelini, P., et al.: Windrose planarity: embedding graphs with direction-constrained edges. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 985–996 (2016).  https://doi.org/10.1137/1.9781611974331
  3. 3.
    de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted plane graphs. Discrete Math. 309(7), 1794–1812 (2009).  https://doi.org/10.1016/j.disc.2007.12.087MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bernáthová, A.: Kreslení grafů s podmínkami na velikosti stěn, Bachelor thesis. Charles University Prague (2009). https://is.cuni.cz/webapps/zzp/detail/63479/20281489/
  5. 5.
    Biedl, T.C., Velázquez, L.E.R.: Orthogonal cartograms with few corners per face. In: Algorithms and Data Structures Symposium (WADS), pp. 98–109 (2011).  https://doi.org/10.1007/978-3-642-22300-6_9Google Scholar
  6. 6.
    Biedl, T.C., Velázquez, L.E.R.: Drawing planar 3-trees with given face areas. Comput. Geom. 46(3), 276–285 (2013).  https://doi.org/10.1016/j.comgeo.2012.09.004MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dobbins, M.G., Kleist, L., Miltzow, T., Rzążewski, P.: Is area universality \(\forall \exists \mathbb{R}\)-complete? In: Brandstädt, A., KöhlerKlaus, E., Meer, K. (eds.) Graph-Theoretic Concepts in Computer Science, WG 2018. LNCS, vol. 11159. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-030-00256-5. AcceptedGoogle Scholar
  8. 8.
    Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained rectangular layouts. SIAM J. Comput. 41(3), 537–564 (2012).  https://doi.org/10.1137/110834032MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Evans, W., et al.: Table cartogram. Comput. Geom. 68, 174–185 (2017).  https://doi.org/10.1016/j.comgeo.2017.06.010. Special Issue in Memory of Ferran HurtadoMathSciNetCrossRefGoogle Scholar
  10. 10.
    Evans, W., Felsner, S., Kleist, L., Kobourov, S.G.: On area-universal quadrangulations. In preparation (2018)Google Scholar
  11. 11.
    Fáry, I.: On straight line representations of planar graphs. Acta Scientiarum Mathematicarum 11, 229–233 (1948)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Felsner, S.: Exploiting air-pressure to map floorplans on point sets. J. Graph. Algorithms Appl. 18(2), 233–252 (2014).  https://doi.org/10.7155/jgaa.00320MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Heinrich, H.: Ansätze zur Entscheidung von Flächenuniversalität. Master thesis, Technische Universität Berlin (2018)Google Scholar
  14. 14.
    Kawaguchi, A., Nagamochi, H.: Orthogonal drawings for plane graphs with specified face areas. In: Theory and Applications of Model of Computation (TAMC), pp. 584–594 (2007).  https://doi.org/10.1007/978-3-540-72504-6_53
  15. 15.
    Kleist, L.: Drawing planar graphs with prescribed face areas. J. Comput. Geom. (JoCG) 9(1), 290–311 (2018).  https://doi.org/10.20382/jocg.v9i1a9
  16. 16.
    Kleist, L.: On the area-universality of triangulations. preprint, ArXiv:1808.10864v2 (2018). http://arxiv.org/abs/1808.10864v2
  17. 17.
    Kleist, L.: Planar graphs and face areas - area-universality. PhD thesis, Technische Universität Berlin (2018)Google Scholar
  18. 18.
    Nusrat, S., Kobourov, S.: The state of the art in cartograms. In: Computer Graphics Forum, vol. 35, pp. 619–642. Wiley Online Library (2016).  https://doi.org/10.1111/cgf.12932CrossRefGoogle Scholar
  19. 19.
    Ringel, G.: Equiareal graphs. In: Bodendiek, R. (ed.) Contemporary Methods in Graph Theory, pp. 503–505. BI Wissenschaftsverlag Mannheim (1990). In honour of Prof. Dr. K. WagnerGoogle Scholar
  20. 20.
    Stein, S.K.: Convex maps. Proc. Am. Math. Soc 2(3), 464 (1951).  https://doi.org/10.1090/S0002-9939-1951-0041425-5MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Thomassen, C.: Plane cubic graphs with prescribed face areas. Comb. Probab. Comput. 1(4), 371–381 (1992).  https://doi.org/10.1017/S0963548300000407MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung 46, 26–32 (1936). https://gdz.sub.uni-goettingen.de/id/PPN37721857X_0046
  23. 23.
    Wimer, S., Koren, I., Cederbaum, I.: Floorplans, planar graphs, and layouts. IEEE Trans. Circuits Syst. 35, 267–278 (1988).  https://doi.org/10.1109/31.1739MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations