Advertisement

Clustered Planarity = Flat Clustered Planarity

  • Pier Francesco Cortese
  • Maurizio PatrignaniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)

Abstract

The complexity of deciding whether a clustered graph admits a clustered planar drawing is a long-standing open problem in the graph drawing research area. Several research efforts focus on a restricted version of this problem where the hierarchy of the clusters is ‘flat’, i.e., no cluster different from the root contains other clusters. We prove that this restricted problem, that we call Flat Clustered Planarity, retains the same complexity of the general Clustered Planarity problem, where the clusters are allowed to form arbitrary hierarchies. We strengthen this result by showing that Flat Clustered Planarity is polynomial-time equivalent to Independent Flat Clustered Planarity, where each cluster induces an independent set. We discuss the consequences of these results.

References

  1. 1.
    Abello, J., Kobourov, S.G., Yusufov, R.: Visualizing large graphs with compound-fisheye views and treemaps. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 431–441. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31843-9_44CrossRefGoogle Scholar
  2. 2.
    Akitaya, H.A., Fulek, R., Tóth, C.D.: Recognizing weak embeddings of graphs. In: Czumaj, A. (ed.) SODA 2018, pp. 274–292 (2018).  https://doi.org/10.1137/1.9781611975031.20CrossRefGoogle Scholar
  3. 3.
    Angelini, P., Da Lozzo, G.: Clustered planarity with pipes. In: Hong, S.H., Eades, P., Meidiana, A. (eds.) ISAAC 2016. LIPIcs, vol. 64, pp. 13:1–13:13 (2016).  https://doi.org/10.4230/LIPIcs.ISAAC.2016.13
  4. 4.
    Angelini, P., Da Lozzo, G.: SEFE = C-planarity? Comput. J. 59(12), 1831–1838 (2016).  https://doi.org/10.1093/comjnl/bxw035MathSciNetCrossRefGoogle Scholar
  5. 5.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 37–48. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03841-4_4CrossRefGoogle Scholar
  6. 6.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing for embedded planar graphs. Algorithmica 77(4), 1022–1059 (2017).  https://doi.org/10.1007/s00453-016-0218-9MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Relaxing the constraints of clustered planarity. Comput. Geom. Theory Appl. 48(2), 42–75 (2015).  https://doi.org/10.1016/j.comgeo.2014.08.001MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731–755 (2017).  https://doi.org/10.7155/jgaa.00437MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance of being proper (in clustered-level planarity and T-level planarity). Theor. Comput. Sci. 571, 1–9 (2015).  https://doi.org/10.1016/j.tcs.2014.12.019MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. J. Discret. Algorithms 14, 150–172 (2012).  https://doi.org/10.1016/j.jda.2011.12.015MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Angelini, P., Frati, F., Kaufmann, M.: Straight-line rectangular drawings of clustered graphs. Discret. Comput. Geom. 45(1), 88–140 (2011).  https://doi.org/10.1007/s00454-010-9302-zMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Angelini, P., Frati, F., Patrignani, M.: Splitting clusters to get C-planarity. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 57–68. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11805-0_8CrossRefGoogle Scholar
  13. 13.
    Batagelj, V., Brandenburg, F.J., Didimo, W., Liotta, G., Palladino, P., Patrignani, M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations. IEEE Trans. Visual. Comput. Graph. 17(11), 1587–1598 (2011).  https://doi.org/10.1109/TVCG.2010.265CrossRefGoogle Scholar
  14. 14.
    Bläsius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial embedding problem. Theor. Comput. Sci. 609, 306–315 (2016).  https://doi.org/10.1016/j.tcs.2015.10.011MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Candela, M., Di Bartolomeo, M., Di Battista, G., Squarcella, C.: Radian: visual exploration of traceroutes. IEEE Trans. Visual. Comput. Graph. 24, 2194–2208 (2018).  https://doi.org/10.1109/TVCG.2017.2716937CrossRefGoogle Scholar
  16. 16.
    Chimani, M., Di Battista, G., Frati, F., Klein, K.: Advances on testing C-planarity of embedded flat clustered graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 416–427. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45803-7_35CrossRefGoogle Scholar
  17. 17.
    Cornelsen, S., Wagner, D.: Completely connected clustered graphs. J. Discret. Algorithms 4(2), 313–323 (2006).  https://doi.org/10.1016/j.jda.2005.06.002MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cortese, P.F., Di Battista, G.: Clustered planarity (invited lecture). In: SoCG 2005, pp. 30–32. ACM (2005)Google Scholar
  19. 19.
    Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-connected clustered graphs. J. Graph Algorithms Appl. 12(2), 225–262 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. J. Graph Algorithms Appl. 9(3), 391–413 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane graph. Discret. Math. 309(7), 1856–1869 (2009).  https://doi.org/10.1016/j.disc.2007.12.090MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Cortese, P., Patrignani, M.: Clustered planarity = Flat clustered planarity. Technical report arXiv:1808.07437v1, Cornell University (2018). http://arxiv.org/abs/1808.07437v2
  23. 23.
    Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix representations of clustered graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 107–120. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_9CrossRefGoogle Scholar
  24. 24.
    Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix representations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139–176 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Da Lozzo, G., Eppstein, D., Goodrich, M.T., Gupta, S.: Subexponential-time and FPT algorithms for embedded flat clustered planarity. In: WG 2018 (2018, to appear)Google Scholar
  26. 26.
    Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054325CrossRefGoogle Scholar
  27. 27.
    Di Battista, G., Didimo, W., Marcandalli, A.: Planarization of clustered graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 60–74. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45848-4_5CrossRefGoogle Scholar
  28. 28.
    Di Battista, G., Drovandi, G., Frati, F.: How to draw a clustered tree. J. Discret. Algorithms 7(4), 479–499 (2009).  https://doi.org/10.1016/j.jda.2008.09.015MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. J. Graph Algorithms Appl. 13(3), 349–378 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Di Giacomo, E., Didimo, W., Liotta, G., Palladino, P.: Visual analysis of one-to-many matched graphs. J. Graph Algorithms Appl. 14(1), 97–119 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Di Giacomo, E., Liotta, G., Patrignani, M., Tappini, A.: NodeTrix planarity testing with small clusters. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 479–491. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73915-1_37CrossRefGoogle Scholar
  32. 32.
    Eades, P., Feng, Q.-W.: Multilevel visualization of clustered graphs. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 101–112. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-62495-3_41CrossRefGoogle Scholar
  33. 33.
    Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006).  https://doi.org/10.1007/s00453-004-1144-8MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Eades, P., Feng, Q., Nagamochi, H.: Drawing clustered graphs on an orthogonal grid. J. Graph Algorithms Appl. 3(4), 3–29 (1999).  https://doi.org/10.7155/jgaa.00016MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Eades, P., Huang, M.L.: Navigating clustered graphs using force-directed methods. J. Graph Algorithms Appl. 4(3), 157–181 (2000).  https://doi.org/10.7155/jgaa.00029CrossRefzbMATHGoogle Scholar
  36. 36.
    Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60313-1_145CrossRefGoogle Scholar
  37. 37.
    Frati, F.: Multilayer drawings of clustered graphs. J. Graph Algorithms Appl. 18(5), 633–675 (2014).  https://doi.org/10.7155/jgaa.00340MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Frati, F.: Clustered graph drawing. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, 2nd edn, pp. 1–6. Springer, New York (2015).  https://doi.org/10.1007/978-3-642-27848-8_655-1CrossRefGoogle Scholar
  39. 39.
    Fulek, R.: C-planarity of embedded cyclic c-graphs. Comput. Geom. 66, 1–13 (2017).  https://doi.org/10.1016/j.comgeo.2017.06.016MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Fulek, R.: Embedding graphs into embedded graphs. In: Okamoto, Y., Tokuyama, T. (eds.) ISAAC 2017. LIPIcs, vol. 92, pp. 34:1–34:12 (2017).  https://doi.org/10.4230/LIPIcs.ISAAC.2017.34
  41. 41.
    Fulek, R., Kynčl, J.: Hanani-Tutte for approximating maps of graphs. In: Speckmann, B., Tóth, C.D. (eds.) SoCG 18. LIPIcs, pp. 39:1–39:15 (2018).  https://doi.org/10.4230/LIPIcs.SoCG.2018.39
  42. 42.
    Fulek, R., Kynčl, J., Malinović, I., Pálvölgyi, D.: Clustered planarity testing revisited. Electr. J. Comb. 22(4) (2015). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p24, Paper P4.24
  43. 43.
    Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg (2006).  https://doi.org/10.1007/11618058_20CrossRefGoogle Scholar
  44. 44.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in C-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–236. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36151-0_21CrossRefzbMATHGoogle Scholar
  45. 45.
    Gutwenger, C., Mutzel, P., Schaefer, M.: Practical experience with Hanani-Tutte for testing c-planarity. In: McGeoch, C.C., Meyer, U. (eds.) ALENEX 2014, pp. 86–97. SIAM (2014).  https://doi.org/10.1137/1.9781611973198.9Google Scholar
  46. 46.
    Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)CrossRefGoogle Scholar
  47. 47.
    Hong, S.H., Nagamochi, H.: Two-page book embedding and clustered graph planarity. Technical report 2009–004, Department of Applied Mathematics & Physics, University of Kyoto, Japan (2009)Google Scholar
  48. 48.
    Itoh, T., Muelder, C., Ma, K., Sese, J.: A hybrid space-filling and force-directed layout method for visualizing multiple-category graphs. In: Eades, P., Ertl, T., Shen, H. (eds.) IEEE PacificVis 2009, pp. 121–128 (2009)Google Scholar
  49. 49.
    Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B.: Clustered planarity: embedded clustered graphs with two-component clusters. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 121–132. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00219-9_13CrossRefGoogle Scholar
  50. 50.
    Jelínek, V., Suchý, O., Tesař, M., Vyskočil, T.: Clustered planarity: clusters with few outgoing edges. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 102–113. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00219-9_11CrossRefGoogle Scholar
  51. 51.
    Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskocil, T.: Clustered planarity: small clusters in cycles and eulerian graphs. J. Graph Algorithms Appl. 13(3), 379–422 (2009).  https://doi.org/10.7155/jgaa.00192MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Sander, G.: Visualisierungstechniken für den compilerbau. Ph.D. thesis, Universität Saarbrücken, Germany (1996)Google Scholar
  53. 53.
    Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants. J. Graph Algorithms Appl. 17(4), 367–440 (2013).  https://doi.org/10.7155/jgaa.00298MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Zhao, S., McGuffin, M.J., Chignell, M.H.: Elastic hierarchies: combining treemaps and node-link diagrams. In: Stasko, J.T., Ward, M.O. (eds.) IEEE InfoVis 2005, p. 8 (2005).  https://doi.org/10.1109/INFOVIS.2005.12

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Roma Tre UniversityRomeItaly

Personalised recommendations