Advertisement

A Heuristic Approach Towards Drawings of Graphs with High Crossing Resolution

  • Michael A. Bekos
  • Henry FörsterEmail author
  • Christian Geckeler
  • Lukas Holländer
  • Michael Kaufmann
  • Amadäus M. Spallek
  • Jan Splett
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)

Abstract

The crossing resolution of a non-planar drawing of a graph is the value of the minimum angle formed by any pair of crossing edges. Recent experiments have shown that the larger the crossing resolution is, the easier it is to read and interpret a drawing of a graph. However, maximizing the crossing resolution turns out to be an NP-hard problem in general and only heuristic algorithms are known that are mainly based on appropriately adjusting force-directed algorithms.

In this paper, we propose a new heuristic algorithm for the crossing resolution maximization problem and we experimentally compare it against the known approaches from the literature. Our experimental evaluation indicates that the new heuristic produces drawings with better crossing resolution, but this comes at the cost of slightly higher aspect ratio, especially when the input graph is large.

Notes

Acknowledgments

This project was supported by DFG grant KA812/18-1. The authors would also like to acknowledge Simon Wegendt and Jessica Wolz for implementing the first version of our prototype.

References

  1. 1.
    Ackerman, E., Fulek, R., Tóth, C.D.: Graphs that admit polyline drawings with few crossing angles. SIAM J. Discrete Math. 26(1), 305–320 (2012).  https://doi.org/10.1137/100819564MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Angelini, P., et al.: On the perspectives opened by right angle crossing drawings. J. Graph Algorithms Appl. 15(1), 53–78 (2011).  https://doi.org/10.7155/jgaa.00217MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Angelini, P., et al.: Large angle crossing drawings of planar graphs in subquadratic area. In: Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 200–209. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34191-5_19CrossRefGoogle Scholar
  4. 4.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012).  https://doi.org/10.7155/jgaa.00274MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of graphs. Comput. J. 56(7), 887–900 (2013).  https://doi.org/10.1093/comjnl/bxs088CrossRefzbMATHGoogle Scholar
  6. 6.
    Arikushi, K., Fulek, R., Keszegh, B., Moric, F., Tóth, C.D.: Graphs that admit right angle crossing drawings. Comput. Geom. 45(4), 169–177 (2012).  https://doi.org/10.1016/j.comgeo.2011.11.008MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bachmaier, C., Brandenburg, F.J., Hanauer, K., Neuwirth, D., Reislhuber, J.: NIC-planar graphs. Discrete Appl. Math. 232, 23–40 (2017).  https://doi.org/10.1016/j.dam.2017.08.015MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017).  https://doi.org/10.1016/j.tcs.2017.05.039MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bekos, M.A., et al.: A heuristic approach towards drawings of graphs with high crossing resolution. CoRR, abs/xxxx.yyyy (2018). https://arxiv.org/abs/xxxx.yyyy
  10. 10.
    Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636, 1–16 (2016).  https://doi.org/10.1016/j.tcs.2016.04.026MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990).  https://doi.org/10.1007/BF02122694MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Di Battista, G., Didimo, W.: GDToolkit. In: Tamassia, R. (ed), Handbook on Graph Drawing and Visualization, pp. 571–597. Chapman and Hall/CRC (2013)Google Scholar
  13. 13.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  14. 14.
    Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite RAC graphs. Inf. Process. Lett. 110(16), 687–691 (2010).  https://doi.org/10.1016/j.ipl.2010.05.023MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011).  https://doi.org/10.1016/j.tcs.2011.05.025MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. CoRR, abs/1804.07257 arXiv:1803.03705 (2018)
  17. 17.
    Didimo, W., Liotta, G., Romeo, S.A.: Graph visualization techniques for conceptual web site traffic analysis. In: IEEE PacificVis, pp. 193–200. IEEE Computer Society (2010).  https://doi.org/10.1109/PACIFICVIS.2010.5429593
  18. 18.
    Didimo, W., Liotta, G., Romeo, S.A.: Topology-driven force-directed algorithms. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 165–176. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-18469-7_15CrossRefGoogle Scholar
  19. 19.
    Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. Chicago J. Theor. Comput. Sci. (2011). http://cjtcs.cs.uchicago.edu/articles/CATS2010/4/contents.html
  20. 20.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  21. 21.
    Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl. Math. 161(7–8), 961–969 (2013).  https://doi.org/10.1016/j.dam.2012.11.019MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994).  https://doi.org/10.1007/BF01187020MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Formann, M., et al.: Drawing graphs in the plane with high resolution. SIAM J. Comput. 22(5), 1035–1052 (1993).  https://doi.org/10.1137/0222063MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991).  https://doi.org/10.1002/spe.4380211102CrossRefGoogle Scholar
  25. 25.
    Giacomo, E.D., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing drawings. Algorithmica 68(4), 954–997 (2014).  https://doi.org/10.1007/s00453-012-9706-7MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Giacomo, E.D., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and crossing resolution of non-planar graph drawings. Theory Comput. Syst. 49(3), 565–575 (2011).  https://doi.org/10.1007/s00224-010-9275-6MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Goldschmidt, O., Takvorian, A.: An efficient graph planarization two-phase heuristic. Networks 24(2), 69–73 (1994).  https://doi.org/10.1002/net.3230240203MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-37623-2_13CrossRefGoogle Scholar
  29. 29.
    Hong, S.-H., Nagamochi, H.: Testing full outer-2-planarity in linear time. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 406–421. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53174-7_29CrossRefGoogle Scholar
  30. 30.
    Hong, S., Tokuyama, T.: Algorithmics for beyond planar graphs. NII Shonan Meeting Seminar 089, 27 November–1 December 2016Google Scholar
  31. 31.
    Huang, W.: Using eye tracking to investigate graph layout effects. In: Hong, S., Ma, K. (eds.) APVIS, pp. 97–100. IEEE Computer Society (2007).  https://doi.org/10.1109/APVIS.2007.329282
  32. 32.
    Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014).  https://doi.org/10.1016/j.jvlc.2014.03CrossRefGoogle Scholar
  33. 33.
    Huang, W., Eades, P., Hong, S., Lin, C.: Improving multiple aesthetics produces better graph drawings. J. Vis. Lang. Comput. 24(4), 262–272 (2013).  https://doi.org/10.1016/j.jvlc.2011.12.002CrossRefGoogle Scholar
  34. 34.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996).  https://doi.org/10.1007/BF02086606MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kaufmann, M., Kobourov, S., Pach, J., Hong, S.: Beyond planar graphs: Algorithmics and combinatorics. Dagstuhl Seminar 16452(November), 6–11 (2016)Google Scholar
  36. 36.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs, Methods and Models. LNCS, vol. 2025. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44969-8CrossRefzbMATHGoogle Scholar
  37. 37.
    Liotta, G.: Graph drawing beyond planarity: some results and open problems. SoCG Week, Invited talk, 4th July 2017Google Scholar
  38. 38.
    Nguyen, Q., Eades, P., Hong, S.-H., Huang, W.: Large crossing angles in circular layouts. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 397–399. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-18469-7_40CrossRefGoogle Scholar
  39. 39.
    Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000)CrossRefGoogle Scholar
  40. 40.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Tamassia, R. (ed.): Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC, Boca Raton (2013)zbMATHGoogle Scholar
  42. 42.
    Wiese, R., Eiglsperger, M., Kaufmann, M.: yFiles - visualization and automatic layout of graphs. In: Jünger, M., Mutzel, P., et al. (eds.) Graph Drawing Software, pp. 173–191. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-642-18638-7_8CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Henry Förster
    • 1
    Email author
  • Christian Geckeler
    • 1
  • Lukas Holländer
    • 1
  • Michael Kaufmann
    • 1
  • Amadäus M. Spallek
    • 1
  • Jan Splett
    • 1
  1. 1.Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations