Advertisement

A Flow Formulation for Horizontal Coordinate Assignment with Prescribed Width

  • Michael Jünger
  • Petra Mutzel
  • Christiane SpislaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)

Abstract

We consider the coordinate assignment phase of the well known Sugiyama framework for drawing directed graphs in a hierarchical style. The extensive literature in this area has given comparatively little attention to a prescribed width of the drawing. We present a minimum cost flow formulation that supports prescribed width and optionally other criteria like lower and upper bounds on the distance of neighboring nodes in a layer or enforced vertical edge segments. In our experiments we demonstrate that our approach can compete with state-of-the-art algorithms.

Keywords

Hierarchical drawings Coordinate assignment Minimum cost flow Prescribed drawing width 

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory, Algorithms and Applications. Prentice Hall, Upper Saddle River (1993)zbMATHGoogle Scholar
  2. 2.
    Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31–44. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45848-4_3CrossRefGoogle Scholar
  3. 3.
    Buchheim, C., Jünger, M., Leipert, S.: A fast layout algorithm for k-level graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 229–240. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44541-2_22CrossRefGoogle Scholar
  4. 4.
    Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  5. 5.
    Coffman, E.G., Graham, R.L.: Optimal scheduling for two-processor systems. Acta Informatica 1(3), 200–213 (1972).  https://doi.org/10.1007/BF00288685MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eades, P., Lin, X., Tamassia, R.: An algorithm for drawing a hierarchical graph. Int. J. Comput. Geom. Appl. 6(2), 145–156 (1996).  https://doi.org/10.1142/S0218195996000101MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing directed graphs. Softw. Eng. 19(3), 214–230 (1993).  https://doi.org/10.1109/32.221135CrossRefGoogle Scholar
  8. 8.
    Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph layering problem. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 98–109. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36151-0_10CrossRefzbMATHGoogle Scholar
  9. 9.
    Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 409–453. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  10. 10.
    Jabrayilov, A., Mallach, S., Mutzel, P., Rüegg, U., von Hanxleden, R.: Compact layered drawings of general directed graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 209–221. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_17CrossRefGoogle Scholar
  11. 11.
    Sander, G.: A fast heuristic for hierarchical Manhattan layout. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 447–458. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0021828CrossRefGoogle Scholar
  12. 12.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981).  https://doi.org/10.1109/TSMC.1981.4308636MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of CologneCologneGermany
  2. 2.TU Dortmund UniversityDortmundGermany

Personalised recommendations