A Flow Formulation for Horizontal Coordinate Assignment with Prescribed Width

  • Michael Jünger
  • Petra Mutzel
  • Christiane SpislaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)


We consider the coordinate assignment phase of the well known Sugiyama framework for drawing directed graphs in a hierarchical style. The extensive literature in this area has given comparatively little attention to a prescribed width of the drawing. We present a minimum cost flow formulation that supports prescribed width and optionally other criteria like lower and upper bounds on the distance of neighboring nodes in a layer or enforced vertical edge segments. In our experiments we demonstrate that our approach can compete with state-of-the-art algorithms.


Hierarchical drawings Coordinate assignment Minimum cost flow Prescribed drawing width 


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory, Algorithms and Applications. Prentice Hall, Upper Saddle River (1993)zbMATHGoogle Scholar
  2. 2.
    Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31–44. Springer, Heidelberg (2002). Scholar
  3. 3.
    Buchheim, C., Jünger, M., Leipert, S.: A fast layout algorithm for k-level graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 229–240. Springer, Heidelberg (2001). Scholar
  4. 4.
    Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  5. 5.
    Coffman, E.G., Graham, R.L.: Optimal scheduling for two-processor systems. Acta Informatica 1(3), 200–213 (1972). Scholar
  6. 6.
    Eades, P., Lin, X., Tamassia, R.: An algorithm for drawing a hierarchical graph. Int. J. Comput. Geom. Appl. 6(2), 145–156 (1996). Scholar
  7. 7.
    Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing directed graphs. Softw. Eng. 19(3), 214–230 (1993). Scholar
  8. 8.
    Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph layering problem. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 98–109. Springer, Heidelberg (2002). Scholar
  9. 9.
    Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 409–453. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  10. 10.
    Jabrayilov, A., Mallach, S., Mutzel, P., Rüegg, U., von Hanxleden, R.: Compact layered drawings of general directed graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 209–221. Springer, Cham (2016). Scholar
  11. 11.
    Sander, G.: A fast heuristic for hierarchical Manhattan layout. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 447–458. Springer, Heidelberg (1996). Scholar
  12. 12.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of CologneCologneGermany
  2. 2.TU Dortmund UniversityDortmundGermany

Personalised recommendations