Advertisement

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

  • Steven Chaplick
  • Fabian Lipp
  • Alexander Wolff
  • Johannes ZinkEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)

Abstract

We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices.

We study the relations of these beyond-planar graph classes to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every n-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size \(\mathcal {O}(n) \times \mathcal {O}(n)\). Then, we show that every n-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size \(\mathcal {O}(n^3) \times \mathcal {O}(n^3)\). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line.

References

  1. 1.
    Bachmaier, C., Brandenburg, F.J., Hanauer, K., Neuwirth, D., Reislhuber, J.: NIC-planar graphs. Discrete Appl. Math. 232, 23–40 (2017).  https://doi.org/10.1016/j.dam.2017.08.015MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017).  https://doi.org/10.1016/j.tcs.2017.05.039MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636, 1–16 (2016).  https://doi.org/10.1016/j.tcs.2016.04.026MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chaplick, S., Lipp, F., Wolff, A., Zink, J.: Compact drawings of 1-planar graphs with right-angle crossings and few bends. Arxiv report (2018). http://arxiv.org/abs/1806.10044v4
  5. 5.
    Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on a grid. Inf. Process. Lett. 54(4), 241–246 (1995).  https://doi.org/10.1016/0020-0190(95)00020-DMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Czap, J., Hudák, D.: On drawings and decompositions of 1-planar graphs. Electr. J. Comb. 20(2), 54 (2013). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i2p54
  7. 7.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011).  https://doi.org/10.1016/j.tcs.2011.05.025MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. Arxiv report (2018). http://arxiv.org/abs/1804.07257
  9. 9.
    Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl. Math. 161(7–8), 961–969 (2013).  https://doi.org/10.1016/j.dam.2012.11.019MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990).  https://doi.org/10.1007/BF02122694MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Harel, D., Sardas, M.: An algorithm for straight-line drawing of planar graphs. Algorithmica 20(2), 119–135 (1998).  https://doi.org/10.1007/PL00009189MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hopcroft, J.E., Tarjan, R.E.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973).  https://doi.org/10.1145/362248.362272CrossRefGoogle Scholar
  13. 13.
    Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014).  https://doi.org/10.1016/j.jvlc.2014.03.001CrossRefGoogle Scholar
  14. 14.
    Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: Proceedings IEEE VGTC Pacific Visualization Symposium (PacificVis 2008), pp. 41–46 (2008).  https://doi.org/10.1109/PACIFICVIS.2008.4475457
  15. 15.
    Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017).  https://doi.org/10.1016/j.cosrev.2017.06.002MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liotta, G., Montecchiani, F.: L-visibility drawings of IC-planar graphs. Inf. Process. Lett. 116(3), 217–222 (2016).  https://doi.org/10.1016/j.ipl.2015.11.011MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63938-1_67CrossRefGoogle Scholar
  18. 18.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Seminar Univ. Hamburg 29(1–2), 107–117 (1965)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) Proceedings 1st ACM-SIAM Symposium Discrete Algorithms (SODA 1990), pp. 138–148 (1990). http://dl.acm.org/citation.cfm?id=320176.320191
  20. 20.
    Wikipedia contributors: Farey sequence—Wikipedia, the free encyclopedia (2018). https://en.wikipedia.org/w/index.php?title=Farey_sequence&oldid=844932264. Accessed 8 June 2018
  21. 21.
    Zink, J.: 1-planar RAC drawings with bends. Master’s thesis, Institut für Informatik, Universität Würzburg (2017). http://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2017-zink-master.pdf

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Lehrstuhl für Informatik I, Universität WürzburgWürzburgGermany

Personalised recommendations